-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschrodinger_1d.py
582 lines (550 loc) · 22.2 KB
/
schrodinger_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#!/usr/bin/env python3
'''
/**********************/
/* schrodinger_1d.py */
/* Version 1.1 */
/* 2024/06/07 */
/**********************/
'''
import argparse
from datetime import timedelta
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
import numpy as np
import os
import pickle
from scipy import integrate, sparse
from scipy.special import hermite
import sys
import time
from mod_config_1d import cfg, p1, electron_params
from mod_config import palette
from mod_plotter_1d import BasePlotter
c = palette
# select the set of parameters to use
p = electron_params if cfg.small_scale else p1
def create_wavepacket(x):
# Gaussian shape
gaussian = np.exp(-(x - p.x0) ** 2 / (2 * p.sigma ** 2))
# Adding the wave component (momentum)
psi0 = gaussian * np.exp(-1j * p.p * x / p.hbar)
# Normalize
psi0 /= np.sqrt(np.sum(np.abs(psi0) ** 2) * p.dx)
return psi0
def create_superposition(x):
match p.potential:
case 1:
# harmonic oscillator
# characteristic length scale
a = np.sqrt(p.hbar / (p.m * p.omega))
psi = sum(np.exp(-1j * n * p.omega * p.p)
* (1.0 / np.sqrt(2.0**n * np.math.factorial(n)))
* (1.0 / np.pi**0.25)
* hermite(n)(x / a)
* np.exp(-x**2 / (2 * a**2))
for n in cfg.eigenfunctions_list)
# normalization
norm = np.sqrt(integrate.simps(np.abs(psi)**2, x))
psi /= norm
case 2:
# infinite high barrier
L = 2 * p.Vx_bar
p0 = p.p
# superposition of eigenfunctions
psi = sum(np.exp(-1j * n * np.pi * p0 / L)
* np.sqrt(2 / L) * np.sin(n * np.pi * (x + p.Vx_bar) / L)
for n in cfg.eigenfunctions_list)
# zero out the wave function outside the well [-p.Vx_bar, p.Vx_bar]
psi = np.where((x >= -p.Vx_bar) & (x <= p.Vx_bar), psi, 0)
# normalization
norm = np.sqrt(np.sum(np.abs(psi)**2) * (x[1] - x[0]))
psi /= norm
case _:
raise NotImplementedError(
f"Superposition for potential {p.potential} not implemented")
return psi
def T_wavepacket(psi):
d2psi_dx2 = np.gradient(np.gradient(psi, p.dx), p.dx)
T_density = -0.5 * p.hbar ** 2 / p.m * np.conj(psi) * d2psi_dx2
T = np.sum(T_density.real) * p.dx
return T
def create_potential(x):
match p.potential:
case 0:
# free space
return np.zeros(len(x))
case 1:
# harmonic oscillator
return 0.5 * p.m * p.omega**2 * x ** 2
case 2:
# infinite high barrier
V = np.zeros(len(x))
# with a value too big RK solver is not converging
# we set the barrier ~1e4 times the value of an average V_0
V_inf = 2e-14 if cfg.small_scale else 1e4
V[x <= -p.Vx_bar] = V_inf
V[x >= p.Vx_bar] = V_inf
return V
case 3:
# infinite right barrier
V = np.zeros(len(x))
V[x >= p.Vx_bar] = p.V_barrier
return V
case 4:
# finite right barrier
V = np.zeros(len(x))
V[(x >= p.Vx_bar) & (x <= p.Vx_finite_bar)] = p.V_barrier
return V
case _:
raise NotImplementedError(
f"Potential {p.potential} not implemented")
# Define the time evolution function for solve_ivp
def schrodinger_rhs(t, psi, H):
dpsi_dt = 1j / p.hbar * (H @ psi)
return dpsi_dt
def compute(x, t_, psi_, V_potential, total_frames):
t = t_
psi = psi_
start_time = time.time()
lim_td = 0.0
end_warning = True
# adjust the simulation step necessary for each iteration so that there
# are the necessary number of seconds in the animation
step = int((p.t_max - lim_td) / p.dt) // total_frames + 1
if cfg.verbose:
print(f"number of total time steps {int((p.t_max-lim_td)/p.dt)}")
print(f"number of total space steps {len(x)}")
print(f"number of time steps for each frame {step}")
N = len(x)
if cfg.increase_precision:
# create potential energy matrix
V = sparse.diags(V_potential, 0)
# create kinetic energy matrix
T = sparse.diags([1, -2, 1], [-1, 0, 1],
shape=(N, N)) * (-p.hbar**2 / (2 * p.m * p.dx**2))
# Hamiltonian matrix (kinetic + potential)
H = T + V
else:
# if scipy is not used, allocate the dense matrices for the matrix
# multiplication
H = np.zeros((N, N), dtype=complex)
for i in range(N):
H[i, i] = V_potential[i]
if i > 0:
H[i, i - 1] = -p.hbar**2 / (2 * p.m * p.dx**2)
if i < N - 1:
H[i, i + 1] = -p.hbar**2 / (2 * p.m * p.dx**2)
# Create identity matrix
In = np.eye(N, dtype=complex)
# Time evolution operators (Crank-Nicolson method)
factor = 1j * p.dt / (2 * p.hbar)
A = In - factor * H
B = In + factor * H
for i in range(total_frames):
# if already after the end of the time to simulate stop
if step * p.dt * i < p.t_max:
t.append(t[i] + p.dt * step)
if cfg.verbose:
print(f"current frame: {i+1}")
# advance time evolution
if cfg.increase_precision:
# define the time span and evaluation points for do many steps
# with a single calculation
t_span = [0, step * p.dt]
t_eval = np.linspace(0, step * p.dt, step + 1)
sol = integrate.solve_ivp(
schrodinger_rhs, t_span, psi[-1], method=cfg.rk_method,
t_eval=t_eval, args=(H,))
# update psi to the last computed value
psi.append(sol.y[:, -1])
else:
for _ in range(step):
psi.append(np.linalg.solve(A, (B @ psi[-1])))
else:
if end_warning:
end_warning = False
print(f"Simulation ended at frame {i}")
elapsed_time = time.time() - start_time
duration = timedelta(seconds=int(elapsed_time))
if duration.total_seconds() >= 3600:
elapsed_time_formatted = str(duration)
else:
minutes, seconds = divmod(duration.total_seconds(), 60)
elapsed_time_formatted = (
f"{int(minutes):02d}:{int(seconds):02d}")
print(f"Compute Time: {elapsed_time_formatted}")
return t, psi
class MyPlotter(BasePlotter):
def __init__(self, params: dict, x, t, psi, V, outfile: str):
super().__init__(params, outfile)
self._x = x
self._t = t
self._psi = psi
self._V = V
def create_axes(self, is_plot: bool):
ax = self._axs_p if is_plot else self._axs_a
ax.axis("on")
ax.spines['left'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
ax.grid(linewidth=0.4, linestyle="--", dashes=(5, 20))
if cfg.small_scale:
scalex = 1e-10
if cfg.plot_prob:
scaley = 1e10
else:
scaley = 1e5
else:
scalex = 1
scaley = 1
if p.potential == 1 or p.potential == 2:
xlimd = -10 * scalex
xlimu = 10 * scalex
else:
xlimd = -5 * scalex
xlimu = 15 * scalex
if cfg.plot_prob:
ylimd = -0.1 * scaley
ylimu = 1.0 * scaley
y_xi = -0.05 * scaley
else:
if cfg.plot_phase:
ylimd = -0.1 * scaley
y_xi = -0.05 * scaley
else:
ylimd = -1.0 * scaley
y_xi = -0.1 * scaley
ylimu = 1.0 * scaley
if not cfg.small_scale:
ax.text(xlimu, y_xi, '$\\xi$', fontsize=18)
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.set_xlim(xlimd, xlimu)
ax.set_ylim(ylimd, ylimu)
def create_barrier(self, ax):
color = (0.83, 0.83, 0.83)
if cfg.small_scale:
scalex = 1e-10
if cfg.plot_prob:
scaley = 1e10
else:
scaley = 1e5
else:
scalex = 1
scaley = 1
match p.potential:
case 0:
ax.plot(self._x, self._V,
color="k", linestyle="-", linewidth=1)
y1 = self._V - 0.2 * scaley
ax.fill_between(self._x, self._V, y1,
where=(self._V > y1), color=color)
case 1:
if cfg.small_scale:
if cfg.plot_prob:
scale2 = 1e27
else:
scale2 = 1e22
else:
scale2 = 0.05
# spread the potential for visualization
V = self._V * scale2
ax.plot(self._x, V, color="k", linestyle="-", linewidth=1)
# Calculate total initial energy
E = p.p**2 / (2 * p.m) + 0.5 * p.m * p.omega**2 * p.x0**2
# Calculate turning points
x_turn = np.sqrt(2 * E / (p.m * p.omega**2))
if cfg.verbose:
print(f"inversion point ±{x_turn}")
ax.plot([-x_turn, -x_turn], [0, 1000 * scaley], color='k',
linestyle='--', dashes=(10, 10), linewidth=0.7)
ax.plot([x_turn, x_turn], [0, 10001000 * scaley], color='k',
linestyle='--', dashes=(10, 10), linewidth=0.7)
if cfg.small_scale:
if cfg.plot_prob:
y1 = (V - 1e9) - 0.1 * self._x**2 * scale2
else:
y1 = (V - 2e4) - 0.1 * self._x**2 * scale2
else:
y1 = (self._V - 5) / 20 - 0.1 * self._x**2 / 20
ax.fill_between(self._x, V, y1, where=(V > y1), color=color)
case 2:
px = np.array([-p.Vx_bar, -p.Vx_bar, p.Vx_bar, p.Vx_bar])
py = np.array([1e12, 0, 0, 1e12])
ax.plot(px, py, color="k", linestyle="-", linewidth=1)
px = np.array([-p.Vx_bar - 1 * scalex, -p.Vx_bar])
py = np.array([1e12, 1e12])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([p.Vx_bar, p.Vx_bar + 1 * scalex])
py = np.array([1e12, 1e12])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([-p.Vx_bar, p.Vx_bar])
py = np.array([0, 0])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
case 3:
if cfg.small_scale:
if cfg.plot_prob:
scale2 = 0.5e28
else:
scale2 = 0.5e23
else:
scale2 = 0.5
# shrink the potential for visualization
V = p.V_barrier * scale2
px = np.array([-p.x_max, p.Vx_bar, p.Vx_bar, p.x_max])
py = np.array([0, 0, V, V])
ax.plot(px, py, color="k", linestyle="-", linewidth=1)
px = np.array([p.Vx_bar, p.Vx_bar + 1.2 * scalex])
py = np.array([V, V])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([-p.x_max, p.Vx_bar])
py = np.array([0, 0])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([p.Vx_bar, p.x_max])
py = np.array([V, V])
y1 = np.array([V - 0.2 * scaley, V - 0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
case 4:
if cfg.small_scale:
if cfg.plot_prob:
scale2 = 0.5e28
else:
scale2 = 0.5e23
else:
scale2 = 0.5
# shrink the potential for visualization
V = p.V_barrier * scale2
px = np.array([-p.x_max, p.Vx_bar, p.Vx_bar,
p.Vx_finite_bar, p.Vx_finite_bar, p.x_max])
py = np.array([0, 0, V, V, 0, 0])
ax.plot(px, py, color="k", linestyle="-", linewidth=1)
px = np.array([p.Vx_bar, p.Vx_bar + 1.2 * scalex])
py = np.array([V, V])
y1 = np.array([0, 0])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([-p.x_max, p.Vx_bar])
py = np.array([0, 0])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
px = np.array([p.Vx_finite_bar, p.x_max])
py = np.array([0, 0])
y1 = np.array([-0.2 * scaley, -0.2 * scaley])
ax.fill_between(px, py, y1, where=(py > y1), color=color)
if p.potential == 3 or p.potential == 4:
T = T_wavepacket(self._psi)
if cfg.verbose:
print(f"momentum of the wavepacket {T}")
if cfg.small_scale:
latex_str = (
f"$\\begin{{array}}{{rl}} V_{{0}} & = {p.V_barrier:.2e}"
+ f"\\\\ \\langle p \\rangle & = {T:.2e} \\end{{array}}$")
else:
latex_str = (
f"$\\begin{{array}}{{rl}} V_{{0}} & = {p.V_barrier}"
+ f"\\\\ \\langle p \\rangle & = {T:.2f} \\end{{array}}$")
ax.text(0.05, 0.85, latex_str, transform=ax.transAxes,
ha='left', va='center', fontsize=20)
def init_graph(self, ax):
# plot the potential barrier
self.create_barrier(ax)
# initialize the plots and store the line objects
if cfg.plot_prob:
self._line, = ax.plot([], [], lw=2, color=c.r, label='$|\\Psi|^2$')
plt.legend(handles=[self._line], fontsize=24)
else:
if cfg.plot_phase:
self._poly = PolyCollection([], cmap='hsv', edgecolors='none')
ax.add_collection(self._poly)
else:
self._line1, = ax.plot(
[], [], lw=1.5, color=c.b, label='$\\Re\\{\\Psi\\}$')
self._line2, = ax.plot(
[], [], lw=1.5, color=c.o, label='$\\Im\\{\\Psi\\}$')
self._line3, = ax.plot([], [], lw=2, color=c.g, label='$|\\Psi|$')
if cfg.plot_phase:
plt.legend(handles=[self._line3], fontsize=24)
else:
plt.legend(
handles=[self._line3, self._line2, self._line1],
fontsize=24)
self._text_obj = ax.text(
0.7, 0.85, '', transform=ax.transAxes,
ha='center', va='center', fontsize=20)
# make the starting plot
self.plot_update(0)
def plot(self):
if self.do_plot:
self._fig_p, self._axs_p = plt.subplots(figsize=(12, 8), dpi=300)
if self.plot:
super().plot()
self.create_axes(True)
self.init_graph(self._axs_p)
# Select with frame to plot without the need of animation
frame_to_plot = len(self._psi) - 1
# frame_to_plot = 0
for i in range(frame_to_plot):
self.frame_update(i, self._axs_p, True)
def init_animation(self):
if not self.do_animation:
return
self._fig_a, self._axs_a = plt.subplots(figsize=(12, 8), dpi=100)
super().init_animation()
self.create_axes(False)
self.init_graph(self._axs_a)
def animate(self):
if not self.do_animation:
return
anim_args = (self._axs_a, False)
self.test_animation_frame = 30
super().animate(self.frame_update, len(self._psi) - 1, anim_args)
def frame_update(self, i: int, axs: np.ndarray, is_plot: bool):
if not is_plot:
super().frame_update(i)
self.plot_update(i + 1)
def plot_update(self, cur_step: int):
if cfg.plot_prob:
self._line.set_data(
self._x, abs(self._psi[cur_step].conjugate() *
self._psi[cur_step]))
else:
if cfg.plot_phase:
# extract the phase of psi
phase = np.angle(self._psi[cur_step])
# normalize phase to [0, 1] for hsl
normalized_phase = (phase + np.pi) / (2 * np.pi)
# create vertices for PolyCollection
verts = [np.column_stack([self._x, np.zeros_like(self._x)])]
verts.append(np.column_stack([self._x,
abs(self._psi[cur_step])]))
# update the PolyCollection with phase colors
polys = [np.column_stack(
[[self._x[j], self._x[j + 1], self._x[j + 1], self._x[j]],
[0, 0, abs(self._psi[cur_step][j + 1]),
abs(self._psi[cur_step][j])]])
for j in range(len(self._x) - 1)]
self._poly.set_verts(polys)
self._poly.set_array(normalized_phase[:-1])
else:
self._line1.set_data(self._x, self._psi[cur_step].real)
self._line2.set_data(self._x, self._psi[cur_step].imag)
self._line3.set_data(self._x, abs(self._psi[cur_step]))
# take into account minor rounding on the last iteration
t_end = self._t[cur_step]
if cfg.compute_prob:
# compute the probability density
prob = integrate.simps(
np.abs(self._psi[cur_step].conj() * self._psi[cur_step]),
self._x)
if cfg.small_scale:
formatted_text = (
f"$\\begin{{array}}{{rl}} t & = {t_end:.2e} \\\\"
+ f"P & = {prob:.2f} \\end{{array}}$")
else:
formatted_text = (
f"$\\begin{{array}}{{rl}} t & = {t_end:.2f} \\\\"
+ f"P & = {prob:.2f} \\end{{array}}$")
else:
if cfg.small_scale:
formatted_text = (f'$t={t_end:.2e}$')
else:
formatted_text = (f'$t={t_end:.2f}$')
self._text_obj.set_text(formatted_text)
def make_plot(outfile: str):
global cfg, p
params = {
# fixed parameters
'ggplot': False,
'dark_background': False,
# configuarable parameters
'high_res': cfg.high_res,
'do_plot': cfg.plot,
'do_compute': cfg.compute,
'do_animation': cfg.animate,
'load_data': cfg.load_data,
'save_data': cfg.save_data,
'data_folder': cfg.data_folder,
'animation_format': cfg.animation_format,
'total_duration': cfg.total_duration,
'fps': cfg.fps
}
# init data so a plot can be done without computing
x = np.arange(-p.x_max, p.x_max, p.dx)
if cfg.superposition:
psi = [create_superposition(x)]
else:
psi = [create_wavepacket(x)]
t = [0.0]
# define the potential
v = create_potential(x)
# deserialize config
if params['load_data']:
folder = params['data_folder']
script_dir = os.path.dirname(os.path.abspath(__file__))
simul_dir = os.path.join(script_dir, folder)
if cfg.verbose:
print(f"Loading params ({simul_dir}/config.pkl)")
if not os.path.exists(simul_dir):
raise FileNotFoundError(f"path not found: {simul_dir}")
with open(simul_dir + '/config.pkl', 'rb') as file:
cfg = pickle.load(file)
p = pickle.load(file)
if cfg.verbose:
print(f"Loading data ({simul_dir}/data.pkl)")
with open(simul_dir + '/data.pkl', 'rb') as file:
t = pickle.load(file)
x = pickle.load(file)
psi = pickle.load(file)
v = pickle.load(file)
# Do not compute or serialize if load
else:
t, psi = compute(
x, t, psi, v, params['total_duration'] * params['fps'])
# serialize data
if params['save_data']:
folder = params['data_folder']
script_dir = os.path.dirname(os.path.abspath(__file__))
simul_dir = os.path.join(script_dir, folder)
if cfg.verbose:
print(f"Saving config and data ({simul_dir})")
if not os.path.exists(simul_dir):
os.makedirs(simul_dir)
with open(simul_dir + '/config.pkl', 'wb') as file:
pickle.dump(cfg, file)
pickle.dump(p, file)
with open(simul_dir + '/data.pkl', 'wb') as file:
pickle.dump(t, file)
pickle.dump(x, file)
pickle.dump(psi, file)
pickle.dump(v, file)
plotter = MyPlotter(params, x, t, psi, v, outfile)
plotter.plot()
plotter.save_plot()
plotter.init_animation()
plotter.animate()
plotter.save_animation()
def main():
parser = argparse.ArgumentParser(
description='schrodinger 1d simulation')
parser.add_argument('-o', '--ofile', help='output file')
args = parser.parse_args()
if args.ofile:
ofile = args.ofile
else:
script_dir = os.path.dirname(os.path.abspath(__file__))
tmp_dir = os.path.join(script_dir, 'tmp')
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
ofile = tmp_dir + "/schrodinger_1d.png"
make_plot(ofile)
if __name__ == '__main__':
if sys.version_info[0] < 3:
raise RuntimeError('Must be using Python 3')
main()