-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
175 lines (129 loc) · 5.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
import argparse
import torch
from torch.utils.data import DataLoader
from model import ShapeRecognizer
from data_utils import custom_dset, collate_fn, denorm
from torch.autograd import Variable
import time
import cv2
import random
def check_val(epoch, train_it, val_loader, crit, net, out_path):
# true positives
tp_s, tp_c, tp_t = 0,0,0
# validation stage
for i, (img, squares, circles, triangles) in enumerate(val_loader):
img = img.cuda()
squares, circles, triangles = squares.cuda(), circles.cuda(), triangles.cuda()
# run input through the network
pred_squar, pred_circ, pred_trgle, sa, ca, ta = net(img)
# CrossEntropyLoss
ls = crit(pred_squar, squares)
lc = crit(pred_circ, circles)
lt = crit(pred_trgle, triangles)
# A regularization that the visualization of the attention masks
reg = (sa.sum() + ca.sum() + ta.sum()) * 1e-05
val_loss = ls + lc + lt + reg
# evalutate over a metrics
_, ps = torch.max(pred_squar, dim=-1)
_, pc = torch.max(pred_circ, dim=-1)
_, pt = torch.max(pred_trgle, dim=-1)
tp_s += torch.sum(squares == ps).item()
tp_c += torch.sum(circles == pc).item()
tp_t += torch.sum(triangles == pt).item()
# this is the only metric adopted
tp_s = tp_s/val_len
tp_c = tp_c/val_len
tp_t = tp_t / val_len
avg_acc = (tp_s + tp_c + tp_t)/3
print('\nAccuracy on squares {} circles {} triangles {} and Average {}'.format( tp_s, tp_c, tp_t, round(avg_acc, 2) ))
print('Batch of GT on Validation: {}'.format(list(squares.data.cpu().numpy())))
print('Batch of predictions on Validation: {}\n'.format(list(ps.data.cpu().numpy())))
# save on disk, input image along with the attention masks
img = img[0].data.cpu().numpy()
img = denorm(img.transpose(1,2,0))
img = cv2.resize(img, (256, 256))
#
con_masks = torch.cat(( sa[0], ca[0], ta[0]), 2).data.cpu().numpy().transpose(1,2,0)*255
con_masks = cv2.resize(con_masks, (256*3, 256)).astype(np.uint8)
con_masks = cv2.applyColorMap(con_masks, 11)
concat = np.concatenate((img, con_masks), 1)
# name comprehensive of the current epoch and followed by the output predictions
name = str(epoch) + '__' + str(train_it) + '___' + str(ps[0].item()) + str(pc[0].item()) + str(pt[0].item()) + '.jpg'
cv2.imwrite(os.path.join(out_path, name), concat)
return val_loss, reg
def train(epochs, net, train_loader, val_loader, optimizer,
save_step, out_path):
crit = torch.nn.CrossEntropyLoss()
for e in range(epochs):
print('*'* 100)
print('Epoch {} / {}'.format(e + 1, epochs))
net.train()
# training stage
for it, (img, squares, circles, triangles) in enumerate(train_loader):
optimizer.zero_grad()
img = Variable(img.cuda())
squares = Variable(squares.cuda())
circles = Variable(circles.cuda())
triangles = Variable(triangles.cuda())
# run input through the network
pred_squar, pred_circ, pred_trgle, sa, ca, ta = net(img)
# CrossEntropyLoss
ls = crit(pred_squar, squares)
lc = crit(pred_circ, circles)
lt = crit(pred_trgle, triangles)
# add to the loss a regularization factor. Mostly it helps for the visualization of the attention masks
reg = (sa.sum() + ca.sum() + ta.sum())*1e-05
train_loss = ls + lc + lt + reg
train_loss.backward()
optimizer.step()
if (it + 1) % 20 == 0:
net.eval()
val_loss, val_reg = check_val(e, it, val_loader, crit, net, out_path)
print('Training loss: {} Train reg: {} Validation loss: {} Val reg: {} '.format(round(train_loss.item(), 3),
round(reg.item(), 3),round(val_loss.item(), 3), round(val_reg.item(), 3)))
net.train()
if (e + 1) % save_step == 0:
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
torch.save(net.state_dict(), './checkpoints/net_{}.pth'.format(e + 1))
def main():
# seed for random generator libraries
global seed
#seed = np.random.randint(0, 10000)
seed = 9345
print(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# deterministic cudnn
print('Additional cudnn determinism')
torch.backends.cudnn.deterministic = True
# get the working directory
root = os.getcwd()
out_path = os.path.join(root, 'masks')
if not os.path.isdir(out_path):
os.mkdir(out_path)
# Load dataset
trainset = custom_dset(root, 'train')
valset = custom_dset(root, 'validation')
train_loader = DataLoader(
trainset, batch_size=28, shuffle=True, collate_fn=collate_fn, num_workers=4)
# for some technical issues I had to specify shuffle=True and use a low batch size for validation.
val_loader = DataLoader(
valset, batch_size=4, shuffle=True, collate_fn=collate_fn, num_workers=4)
# global variables
global val_len
global train_len
val_len = len(valset)
# ShapeRecognizer model is able to count three type shapes
net = ShapeRecognizer()
net = net.cuda()
# optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=1e-4)
train(epochs=11, net=net, train_loader=train_loader, val_loader=val_loader, optimizer=optimizer,
save_step=2, out_path=out_path)
if __name__ == "__main__":
main()