Skip to content

๐Ÿ’งWater Potability Prediction .๐Ÿ”ฌ AI-Powered Analysis: Predicts water safety using machine learning. ๐Ÿ“Š Key Metrics: Evaluates pH, sulfate, and other attributes. ๐ŸŒInteractive Interface: Flask-based with Home, Blog, and Prediction Form. โœ… Accurate Results: Ensures reliable insights for water safety.

Notifications You must be signed in to change notification settings

ayinalakoteswararao/water-quality-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

20 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ’ง Water Quality Prediction System

An intelligent system for predicting water potability using machine learning

Python Flask scikit-learn

โœจ Features

๐Ÿ”ฎ Smart Prediction

  • Real-time water quality analysis
  • Advanced machine learning algorithms
  • Instant potability results

๐ŸŒ Web Interface

  • User-friendly dashboard
  • Interactive prediction form
  • Beautiful visualization of results

๐Ÿ“ง Notifications

  • Email alert system
  • Detailed prediction reports
  • Instant feedback

๐Ÿ“š Knowledge Base

  • Comprehensive blog section
  • Water quality information
  • Expert insights

๐Ÿ› ๏ธ Technical Stack

  • ๐Ÿ Backend: Flask (Python)
  • ๐ŸŽจ Frontend: HTML, CSS, JavaScript
  • ๐Ÿค– Machine Learning: scikit-learn
  • ๐Ÿ“Š Data Processing: pandas, numpy
  • ๐Ÿ”„ Model: Voting Classifier

๐Ÿš€ Installation

  1. Clone the repository
git clone [repository-url]
cd water-project
  1. Set up Python environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies
pip install -r requirements.txt
  1. Run the application
python app.py

๐Ÿ’ป Usage

  1. ๐ŸŒ Open your browser and navigate to http://localhost:5000
  2. ๐Ÿ“ Enter water quality parameters in the prediction form:
    • pH Value
    • Hardness
    • Total Dissolved Solids
    • Chloramines
    • Sulfate
    • Conductivity
    • Organic Carbon
    • Trihalomethanes
    • Turbidity
  3. ๐Ÿ” Click "Predict" to get instant results

๐Ÿ“ Project Structure

water-project/
โ”œโ”€โ”€ ๐Ÿ“‚ static/
โ”‚   โ”œโ”€โ”€ css/
โ”‚   โ”œโ”€โ”€ js/
โ”‚   โ””โ”€โ”€ images/
โ”œโ”€โ”€ ๐Ÿ“‚ templates/
โ”‚   โ”œโ”€โ”€ index.html
โ”‚   โ”œโ”€โ”€ predict.html
โ”‚   โ””โ”€โ”€ result.html
โ”œโ”€โ”€ ๐Ÿ“„ app.py
โ”œโ”€โ”€ ๐Ÿ“Š water_potability.csv
โ””โ”€โ”€ ๐Ÿค– voting_classifier_model.pkl

๐ŸŽฏ Model Performance

Our Voting Classifier model achieves:

  • โœ… Accuracy: 75-80%
  • โœ… Reliable predictions
  • โœ… Fast processing time

๐Ÿค Contributing

  1. ๐Ÿ”ฑ Fork the repository
  2. ๐ŸŒฟ Create your feature branch (git checkout -b feature/AmazingFeature)
  3. ๐Ÿ’พ Commit your changes (git commit -m 'Add some AmazingFeature')
  4. ๐Ÿ“ค Push to the branch (git push origin feature/AmazingFeature)
  5. ๐ŸŽ Open a Pull Request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ“ž Contact

๐Ÿ“ง Email: ayinalakoteswararao@gmail.com ๐ŸŒ Website: Through the contact form on our website


Made with โค๏ธ by the Water Quality Prediction Team

About

๐Ÿ’งWater Potability Prediction .๐Ÿ”ฌ AI-Powered Analysis: Predicts water safety using machine learning. ๐Ÿ“Š Key Metrics: Evaluates pH, sulfate, and other attributes. ๐ŸŒInteractive Interface: Flask-based with Home, Blog, and Prediction Form. โœ… Accurate Results: Ensures reliable insights for water safety.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published