- Yuanta50
- Taiwan50
- orderbook (day orderbook data for INDEX)
- oil_price
- bond(fiveyear + ten year)
- TXF
- EXF
- FXF
- E_F(EXF/FXF)
- Nikkei
- SP(S&P 500)
- DJ(Dow Jones)
- Russel
- VIX
- SOX
- pcr(put call ratio)
- FOI(foreign investor OI)
- IOI(Investment Trust OI)
- DOI(Dealer OI)
- inf(infaltion rate)
- Regression model for Yunta50
- Regression model for 18 ETF
- Classification model for 18 ETF
- Display for .py
- Exploration of Yunta50
-
load.py(return Dataframe)
- load_stock(fname)
- load_ETFtable(fname)
- load_ETFindex(fname,stock)
- load_ETF(ETFtable,ETFcode)
- load_orderbook(fname,ETF) : load orderbook and make the date of it as same as the ETF
-
price_onedaymodel.py
- one_day_prediction_18(ETFtable,ETF_list,window,lamb): return ETF_score,ETF_model,ETF_features
- one_day_prediction(ETF,window,lamb) : return score,model,ETF_features
- feature_importance(model) :display the weight of every features graph
- feature_importance_scatter(model,window,ETF_features) : display the weight of ETF_features graph(group by category)
lamb : the coeficient of the regularization
-
price_fivedaymodel.py
- five_day_prediction_18(ETFtable,ETF_list,window,lamb): return ETF_week_score(total 18 ETF score numpy array)
- five_day_prediction(ETF,window,lamb) : return week_score(1 ETF score numpy array)
- show_week_score_18(ETF_score) : display ETF_week_score for the recent weeks
- show_week_score(score): display week_score for the recent weeks
-
class_onedaymodel.py
- one_day_prediction_regression_18(ETFtable,ETF_list,window,lamb,interval): return 18 ETF score
- one_day_prediction_regression(ETF,window,lamb,interval) : print average score
- one_day_prediction_svm_18(ETFtable,ETF_list,window,interval,kernel,C,gamma,coef0) :print score array
- one_day_prediction_svm(ETF,window,interval,kernel,C,gamma,coef0) :print average train score and test score
kernel,C,gamma,coef0 : the same as the sklearn.svm
interval : the range to define rise of fall
-
class_fivedaymodel_re.py
- five_day_prediction_18(ETFtable,ETF_list,window,lamb) :return ETF_week_score
- five_day_prediction(ETF,window,lamb): return week_score
Can use show_week_score_18 ,show_week_score from price_fivedaymodel.py to display the score
-
submit.py
- submit_data(ETFtable,ETF_list,window,lamb) : generate Submission.csv