-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
41 lines (32 loc) · 1.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import torch
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>5f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
for i_y, i_pred in zip(list(y), list(pred)):
i_y = list(i_y[0].numpy())[0]
i_pred = np.round(list(i_pred[0].numpy())[0])
correct += 1 if i_y == i_pred else 0
test_loss /= num_batches
print(f"Test Error: Avg loss: {test_loss:>8f}")
print(f"Accuracy: {correct}/{size:>0.1f} = {correct/size * 100:<0.2f}% \n")