-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
39 lines (29 loc) · 1.05 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from PIL import Image
import os
import requests
from io import BytesIO
from torch.utils.data import Dataset
class COCO(Dataset):
def __init__(self, data, images_path):
self.data = data
self.images_path = images_path
def __getitem__(self, idx):
image_path = os.path.join(self.images_path, self.data.iloc[idx].filename)
image = Image.open(image_path).convert("RGB")
caption = self.data.iloc[idx].sentences
return {'image' : image,
'caption' : caption}
def __len__(self):
return len(self.data)
def fetch_image(image_url):
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
return img
def local_coco_collate_fn(batch):
batch = [{'image' : obj['image'], 'caption' : obj['caption']} for obj in batch]
return batch
def url_coco_collate_fn(batch):
batch = [{'image' : COCO.fetch_image(obj['url']), 'caption' : obj['sentences']} for obj in batch]
return batch
def collate_fn(data):
return data