-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
292 lines (248 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
Main training and generation script for language model fine-tuning.
This script provides a unified interface for:
1. Training new models
2. Continuing training from checkpoints
3. Generating text from trained models
Key Features:
- Flexible model selection from HuggingFace hub
- Dataset configuration and processing
- Training visualization with TensorBoard/W&B
- Text generation with configurable parameters
Commands:
Training:
python train.py --mode train --model gpt2 --dataset wikitext
Continue Training:
python train.py --mode continue --continue_from ./checkpoint-1000
Generate Text:
python train.py --mode generate --model_path ./results/final_model \
--prompt "Once upon a time" \
--temperature 0.8 --max_length 200
Configuration:
- Training settings in TrainingConfig
- Dataset options in DataConfig
- Visualization settings in VisualizationConfig
"""
import argparse
from pathlib import Path
import json
import os
from datetime import datetime
from src.data_processor import DataProcessor
from src.model_utils import load_model_and_tokenizer, create_training_args
from src.trainer import CustomTrainer
from config import TrainingConfig, DataConfig
def save_training_metadata(output_dir: str, config: dict):
"""
Save training configuration and metadata for reproducibility.
Args:
output_dir (str): Directory to save metadata
config (dict): Configuration to save, including:
- training_config: Model and training parameters
- data_config: Dataset settings
- cli_args: Command line arguments used
Creates:
training_metadata.json with:
- Training date and time
- Complete configuration
- CLI arguments used
"""
metadata = {
"training_date": datetime.now().isoformat(),
"config": config,
}
with open(os.path.join(output_dir, "training_metadata.json"), "w") as f:
json.dump(metadata, f, indent=2)
def main(args):
"""
Main function handling model training, continuing training, and text generation.
Modes:
train: Train a new model
Required: --model (optional, default: distilgpt2)
Optional: --dataset, --wandb
continue: Continue training from checkpoint
Required: --continue_from (checkpoint path)
Optional: --wandb
generate: Generate text using a trained model
Required: --model_path
Optional: --prompt, --max_length, --temperature, --top_k, --top_p
Args:
args: Command line arguments including:
mode (str): Operation mode (train/continue/generate)
model (str): Model name from HuggingFace
dataset (str): Dataset name from HuggingFace
continue_from (str): Path to checkpoint
model_path (str): Path to model for generation
prompt (str): Text prompt for generation
max_length (int): Maximum generation length
temperature (float): Sampling temperature
top_k (int): Top-k sampling parameter
top_p (float): Top-p sampling parameter
wandb (bool): Enable Weights & Biases logging
Examples:
>>> # Train new model
>>> args = parser.parse_args(['--mode', 'train', '--model', 'gpt2'])
>>> main(args)
>>> # Generate text
>>> args = parser.parse_args(['--mode', 'generate',
... '--model_path', './results/final_model',
... '--prompt', 'Once upon a time'])
>>> main(args)
"""
# Load configurations
training_config = TrainingConfig()
data_config = DataConfig()
# Update configs from CLI args
if args.model:
training_config.model_name = args.model
if args.dataset:
data_config.dataset_name = args.dataset
# Handle model loading
if args.mode == "generate":
if not args.model_path:
raise ValueError("--model_path required for generation mode")
model, tokenizer = load_model_and_tokenizer(args.model_path)
print(f"Loaded model from: {args.model_path}")
else: # training modes
if args.continue_from:
model, tokenizer = load_model_and_tokenizer(args.continue_from)
print(f"Continuing training from: {args.continue_from}")
else:
model, tokenizer = load_model_and_tokenizer(training_config.model_name)
# Prepare dataset
data_processor = DataProcessor(tokenizer, data_config.max_length)
dataset = data_processor.prepare_dataset(
data_config.dataset_name,
data_config.dataset_config_name
)
# Set up trainer
trainer = CustomTrainer(
model=model,
args=create_training_args(training_config),
train_dataset=dataset["train"] if args.mode != "generate" else None,
eval_dataset=dataset["test"] if args.mode != "generate" and "test" in dataset else None,
tokenizer=tokenizer,
viz_config={'use_tensorboard': True, 'use_wandb': args.wandb}
)
# Handle different modes
if args.mode == "evaluate":
if not args.eval_file:
raise ValueError("--eval_file required for evaluation mode")
# Load workflow configuration
with open(args.eval_workflow) as f:
workflow_config = json.load(f)
if args.human_eval_template:
with open(args.human_eval_template) as f:
human_eval_config = json.load(f)
workflow_config['human_evaluation_template'] = human_eval_config
# Load evaluation examples
with open(args.eval_file) as f:
eval_examples = json.load(f)
# Run structured evaluation
results = trainer.run_structured_evaluation(eval_examples, workflow_config)
# Print detailed results in a structured way
print("\nEvaluation Results:")
for category in ['automatic_metrics', 'task_specific', 'examples']:
if category in results:
print(f"\n{category.upper()}:")
if isinstance(results[category], dict):
for metric, value in results[category].items():
if isinstance(value, float):
print(f" {metric}: {value:.4f}")
else:
print(f" {metric}: {value}")
elif isinstance(results[category], list):
print(f" Number of examples: {len(results[category])}")
# Print timestamps
if 'timestamps' in results:
print(f"\nEvaluation started: {results['timestamps']['start']}")
print(f"Evaluation ended: {results['timestamps']['end']}")
elif args.mode == "generate":
# Add generation configuration
gen_config = {
"max_length": args.max_length or 150,
"temperature": args.temperature or 0.9,
"top_k": args.top_k or 50,
"top_p": args.top_p or 0.95,
"do_sample": True, # Enable sampling
"pad_token_id": tokenizer.eos_token_id,
"num_return_sequences": 1
}
prompts = [args.prompt] if args.prompt else [
"Once upon a time",
"In a world where",
"In the future",
"Lock in",
"Building and accelerating"
]
for prompt in prompts:
# Encode prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
outputs = model.generate(
**inputs,
**gen_config
)
# Decode and remove prompt from output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
if prompt in generated_text:
generated_text = generated_text[len(prompt):].strip()
print(f"\nPrompt: {prompt}\nGenerated: {generated_text}\n{'-'*50}")
else:
# Training modes
trainer.train(resume_from_checkpoint=args.continue_from)
model.save_pretrained(f"{training_config.output_dir}/final_model")
tokenizer.save_pretrained(f"{training_config.output_dir}/final_model")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Language Model Fine-tuning and Generation",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Train a new model:
python train.py --mode train --model gpt2 --dataset wikitext
# Continue training from checkpoint:
python train.py --mode continue --continue_from ./results/checkpoint-1000
# Generate text:
python train.py --mode generate --model_path ./results/final_model \
--prompt "Once upon a time" --temperature 0.8
# Enable W&B logging:
python train.py --mode train --model gpt2 --wandb
"""
)
parser.add_argument("--mode", choices=["train", "continue", "generate", "evaluate"],
default="train",
help="Operation mode: train/continue/generate/evaluate")
# Training arguments
parser.add_argument("--model", type=str,
help="Model name from HuggingFace hub")
parser.add_argument("--dataset", type=str,
help="Dataset name from HuggingFace hub")
parser.add_argument("--continue_from", type=str,
help="Path to checkpoint to continue training from")
parser.add_argument("--wandb", action="store_true",
help="Enable Weights & Biases logging")
# Generation arguments
parser.add_argument("--model_path", type=str,
help="Path to trained model for generation")
parser.add_argument("--prompt", type=str,
help="Text prompt for generation")
parser.add_argument("--max_length", type=int,
help="Maximum generation length")
parser.add_argument("--temperature", type=float,
help="Sampling temperature")
parser.add_argument("--top_k", type=int,
help="Top-k sampling parameter")
parser.add_argument("--top_p", type=float,
help="Top-p sampling parameter")
# Evaluation arguments
parser.add_argument("--eval_file", type=str,
help="JSON file containing evaluation examples")
parser.add_argument("--eval_workflow", type=str,
help="Path to evaluation workflow configuration",
default="evaluation_workflows/default_workflow.json")
parser.add_argument("--human_eval_template", type=str,
help="Path to human evaluation template file",
default="evaluation_workflows/human_eval_template.json")
args = parser.parse_args()
main(args)