-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdlx6.w
1197 lines (1083 loc) · 43.5 KB
/
dlx6.w
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@s item int
@s node int
@s mod and
\let\Xmod=\bmod % this is CWEB magic for using "mod" instead of "%"
\datethis
@*Intro. This program is part of a series of ``exact cover solvers'' that
I'm putting together for my own education as I prepare to write Section
7.2.2.1 of {\sl The Art of Computer Programming}. My intent is to
have a variety of compatible programs on which I can run experiments,
in order to learn how different approaches work in practice.
The basic input format for all of these solvers is described at the beginning
of programs {\mc DLX1} and {\mc DLX2};
you should read that description now if you are unfamiliar with it.
This program modifies {\mc DLX2} by caching the results of partial solutions.
Its output is not a list of solutions, but rather a ZDD that characterizes
them. (The basic ideas are due to Masaaki Nishino, Norihito Yasuda,
Shin-ichi Minato, and Masaaki Nagata, whose paper ``Dancing with
decision diagrams'' appeared in the 31st AAAI Conference on Articial
Intelligence (2017), pages 868--874. However, I've extended it from
the exact cover problem to the considerably more general {\mc MCC} problem,
by adding color constraints and multiplicities.)
The ZDD is output in the text format accepted by the {\mc ZDDREAD} programs,
which I prepared long ago in connection with {\mc BDD15} and other software.
A dummy node is placed at the root of the ZDD, so that {\mc ZDDREAD} will
know where to start.
This ZDD is not properly ordered, in general; but I think the
{\mc ZDDREAD} programs will still work. (Knock on wood.)
@ After this program finds all solutions, it normally prints their total
number on |stderr|, together with statistics about how many
nodes were in the search tree, how many ``updates'' and
``cleansings'' were made, how many ZDD nodes were created, and
how many cache memos were made.
The running time in ``mems'' is also reported, together with the approximate
number of bytes needed for data storage.
(An ``update'' is the removal of an option from its item list.
A ``cleansing'' is the removal of a satisfied color constraint from its option.
One ``mem'' essentially means a memory access to a 64-bit word.
The reported totals don't include the time or space needed to parse the
input or to format the output.)
Here is the overall structure:
@d o mems++ /* count one mem */
@d oo mems+=2 /* count two mems */
@d ooo mems+=3 /* count three mems */
@d O "%" /* used for percent signs in format strings */
@d mod % /* used for percent signs denoting remainder in \CEE/ */
@d max_level 5000 /* at most this many options in a solution */
@d max_cols 100000 /* at most this many items */
@d max_nodes 10000000 /* at most this many items and spacers in all options */
@d max_inx 200000 /* at most this many items and item-color pairs */
@d max_cache 2000000000 /* octabytes in the cache */
/* N.B.: |max_cache| must be less than $2^{32}$, because of \&{hashentry} */
@d loghashsize 30
@d hashsize (1<<loghashsize) /* octabytes in the hash table */
@d bufsize (9*max_cols+3) /* a buffer big enough to hold all item names */
@c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "gb_flip.h"
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /* ditto */
@<Type definitions@>;
@<Global variables@>;
@<Subroutines@>;
main (int argc, char *argv[]) {
register int cc,i,j,k,p,pp,q,r,t,cur_node,best_itm,znode,zsol,optionno,hit;
@<Process the command line@>;
@<Input the item names@>;
@<Input the options@>;
@<Initialize the memo cache@>;
if (vbose&show_basics)
@<Report the successful completion of the input phase@>;
if (vbose&show_tots)
@<Report the item totals@>;
imems=mems, mems=0;
@<Solve the problem@>;
done:@+if (sanity_checking) sanity();
if (spacing)
printf(""O"x: (~0?0:"O"x)\n",zddnodes,znode); /* the root of the ZDD */
if (vbose&show_tots)
@<Report the item totals@>;
if (vbose&show_profile) @<Print the profile@>;
if (vbose&show_basics) {
fprintf(stderr,"Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,",
count,count==1?"":"s",imems,mems);
bytes=last_itm*sizeof(item)+last_node*sizeof(node)+maxl*sizeof(int);
bytes+=sigptr*sizeof(inx)+cacheptr*sizeof(ullng);
bytes+=(2*hashcount>hashsize?hashsize:2*hashcount)*sizeof(hashentry);
fprintf(stderr," "O"llu updates, "O"llu cleansings,",
updates,cleansings);
fprintf(stderr," "O"llu bytes, "O"llu search nodes,",
bytes,nodes);
fprintf(stderr," "O"u ZDD node"O"s, "O"u+"O"u signatures, "O"llu hits.\n",
zddnodes==2?1:zddnodes,zddnodes==2?"":"s",memos-goodmemos,goodmemos+1,hits);
/* I added 1 because the book says the all-zero signature is in the cache */
}
@<Close the files@>;
}
@ You can control the amount of output, as well as certain properties
of the algorithm, by specifying options on the command line:
\smallskip\item{$\bullet$}
`\.v$\langle\,$integer$\,\rangle$' enables or disables various kinds of verbose
output on |stderr|, given by binary codes such as |show_choices|;
\item{$\bullet$}
`\.m$\langle\,$integer$\,\rangle$', if nonzero, causes the ZDD
to be output (the default is \.{m0}, which merely counts the solutions);
\item{$\bullet$}
`\.s$\langle\,$integer$\,\rangle$' causes the algorithm to make
random choices in key places (thus providing some variety, although
the solutions are by no means uniformly random), and it also
defines the seed for any random numbers that are used;
\item{$\bullet$}
`\.d$\langle\,$integer$\,\rangle$' sets |delta|, which causes periodic
state reports on |stderr| after the algorithm has performed approximately
|delta| mems since the previous report (default 10000000000);
\item{$\bullet$}
`\.c$\langle\,$positive integer$\,\rangle$' limits the levels on which
choices are shown during verbose tracing;
\item{$\bullet$}
`\.C$\langle\,$positive integer$\,\rangle$' limits the levels on which
choices are shown in the periodic state reports;
\item{$\bullet$}
`\.l$\langle\,$nonnegative integer$\,\rangle$' gives a {\it lower\/} limit,
relative to the maximum level so far achieved, to the levels on which
choices are shown during verbose tracing;
\item{$\bullet$}
`\.t$\langle\,$positive integer$\,\rangle$' causes the program to
stop searching for additional solutions, after this many have been found;
\item{$\bullet$}
`\.T$\langle\,$integer$\,\rangle$' sets |timeout| (which causes abrupt
termination if |mems>timeout| at the beginning of a level);
\item{$\bullet$}
`\.Z$\langle\,$positive integer$\,\rangle$' sets |maxzdd| (which causes early
termination if |zddnodes>maxzdd|); \.{Z0} will give just the first solution;
\item{$\bullet$}
`\.S$\langle\,$filename$\,\rangle$' to output a ``shape file'' that encodes
the search tree.
@d show_basics 1 /* |vbose| code for basic stats; this is the default */
@d show_choices 2 /* |vbose| code for backtrack logging */
@d show_details 4 /* |vbose| code for further commentary */
@d show_hits 8 /* |vbose| code to show cache hits */
@d show_secondary_details 16 /* |vbose| code to show active secondary lists */
@d show_profile 128 /* |vbose| code to show the search tree profile */
@d show_full_state 256 /* |vbose| code for complete state reports */
@d show_tots 512 /* |vbose| code for reporting item totals at start and end */
@d show_warnings 1024 /* |vbose| code for reporting options without primaries */
@<Glob...@>=
int random_seed=0; /* seed for the random words of |gb_rand| */
int randomizing; /* has `\.s' been specified? */
int vbose=show_basics+show_warnings; /* level of verbosity */
int spacing; /* a ZDD is output if |spacing!=0| */
int show_choices_max=1000000; /* above this level, |show_choices| is ignored */
int show_choices_gap=1000000; /* below level |maxl-show_choices_gap|,
|show_details| is ignored */
int show_levels_max=1000000; /* above this level, state reports stop */
int maxl=0; /* maximum level actually reached */
char buf[bufsize]; /* input buffer */
ullng count; /* solutions found so far */
ullng options; /* options seen so far */
ullng imems,mems; /* mem counts */
ullng updates; /* update counts */
ullng cleansings; /* cleansing counts */
ullng bytes; /* memory used by main data structures */
ullng nodes; /* total number of branch nodes initiated */
ullng thresh=10000000000; /* report when |mems| exceeds this, if |delta!=0| */
ullng delta=10000000000; /* report every |delta| or so mems */
ullng maxcount=0xffffffffffffffff; /* stop after finding this many solutions */
ullng maxzdd=0xffffffffffffffff; /* stop after finding this many ZDD nodes */
ullng timeout=0x1fffffffffffffff; /* give up after this many mems */
FILE *shape_file; /* file for optional output of search tree shape */
char *shape_name; /* its name */
@ If an option appears more than once on the command line, the first
appearance takes precedence.
@<Process the command line@>=
for (j=argc-1,k=0;j;j--) switch (argv[j][0]) {
case 'v': k|=(sscanf(argv[j]+1,""O"d",&vbose)-1);@+break;
case 'm': k|=(sscanf(argv[j]+1,""O"d",&spacing)-1);@+break;
case 's': k|=(sscanf(argv[j]+1,""O"d",&random_seed)-1),randomizing=1;@+break;
case 'd': k|=(sscanf(argv[j]+1,""O"lld",&delta)-1),thresh=delta;@+break;
case 'c': k|=(sscanf(argv[j]+1,""O"d",&show_choices_max)-1);@+break;
case 'C': k|=(sscanf(argv[j]+1,""O"d",&show_levels_max)-1);@+break;
case 'l': k|=(sscanf(argv[j]+1,""O"d",&show_choices_gap)-1);@+break;
case 't': k|=(sscanf(argv[j]+1,""O"lld",&maxcount)-1);@+break;
case 'T': k|=(sscanf(argv[j]+1,""O"lld",&timeout)-1);@+break;
case 'Z': k|=(sscanf(argv[j]+1,""O"lld",&maxzdd)-1);@+break;
case 'S': shape_name=argv[j]+1, shape_file=fopen(shape_name,"w");
if (!shape_file)
fprintf(stderr,"Sorry, I can't open file `"O"s' for writing!\n",
shape_name);
break;
default: k=1; /* unrecognized command-line option */
}
if (k) {
fprintf(stderr, "Usage: "O"s [v<n>] [m<n>] [s<n>] [d<n>]"
" [c<n>] [C<n>] [l<n>] [t<n>] [T<n>] [S<bar>] [Z<n] < foo.dlx\n",
argv[0]);
exit(-1);
}
if (randomizing) gb_init_rand(random_seed);
else gb_init_rand(0);
@ @<Close the files@>=
if (shape_file) fclose(shape_file);
@*Data structures.
Each item of the input matrix is represented by an \&{item} struct,
and each option is represented as a list of \&{node} structs. There's one
node for each nonzero entry in the matrix.
More precisely, the nodes of individual options appear sequentially,
with ``spacer'' nodes between them. The nodes are also
linked circularly with respect to each item, in doubly linked lists.
The item lists each include a header node, but the option lists do not.
Item header nodes are aligned with an \&{item} struct, which
contains further info about the item.
Each node contains four important fields. Two are the pointers |up|
and |down| of doubly linked lists, already mentioned.
A~third points directly to the item containing the node.
And the last specifies a color, or zero if no color is specified.
A ``pointer'' is an array index, not a \CEE/ reference (because the latter
would occupy 64~bits and waste cache space). The |cl| array is for
\&{item} structs, and the |nd| array is for \&{node}s. I assume that both of
those arrays are small enough to be allocated statically. (Modifications
of this program could do dynamic allocation if needed.)
The header node corresponding to |cl[c]| is |nd[c]|.
Notice that each \&{node} occupies two octabytes.
We count one mem for a simultaneous access to the |up| and |down| fields,
or for a simultaneous access to the |itm| and |color| fields.
Although the item-list pointers are called |up| and |down|, they need not
correspond to actual positions of matrix entries. The elements of
each item list can appear in any order, so that one option
needn't be consistently ``above'' or ``below'' another. Indeed, when
|randomizing| is set, we intentionally scramble each item list.
This program doesn't change the |itm| fields after they've first been set up.
But the |up| and |down| fields will be changed frequently, although preserving
relative order.
Exception: In the node |nd[c]| that is the header for the list of
item~|c|, we use the |itm| field to hold the {\it length\/} of that
list (excluding the header node itself).
We also might use its |color| field for special purposes.
The alternative names |len| for |itm| and |aux| for |color|
are used in the code so that this nonstandard semantics will be more clear.
A {\it spacer\/} node has |itm<=0|. Its |up| field points to the start
of the preceding option; its |down| field points to the end of the following option.
Thus it's easy to traverse an option circularly, in either direction.
The |color| field of a node is set to |-1| when that node has been cleansed.
In such cases its original color appears in the item header.
(The program uses this fact only for diagnostic outputs.)
@d len itm /* item list length (used in header nodes only) */
@d aux color /* an auxiliary quantity (used in header nodes only) */
@<Type...@>=
typedef struct node_struct {
int up,down; /* predecessor and successor in item list */
int itm; /* the item containing this node */
int color; /* the color specified by this node, if any */
} node;
@ Each \&{item} struct contains five fields:
The |name| is the user-specified identifier;
|next| and |prev| point to adjacent items, when this
item is part of a doubly linked list;
|sig| and |offset| are part of the memo-cache mechanism explained below.
As backtracking proceeds, nodes
will be deleted from item lists when their option has been hidden by
other options in the partial solution.
But when backtracking is complete, the data structures will be
restored to their original state.
We count one mem for a simultaneous access to the |prev| and |next| fields;
also one mem for a simultaneous access to both |sig| and |offset|.
@<Type...@>=
typedef struct itm_struct {
char name[8]; /* symbolic identification of the item, for printing */
int prev,next; /* neighbors of this item */
int sig,offset; /* fields for constructing signatures for the memo cache */
} item;
@ @<Glob...@>=
node nd[max_nodes]; /* the master list of nodes */
int last_node; /* the first node in |nd| that's not yet used */
item cl[max_cols+2]; /* the master list of items */
int second=max_cols; /* boundary between primary and secondary items */
int last_itm; /* the first item in |cl| that's not yet used */
@ One |item| struct is called the root. It serves as the head of the
list of items that need to be covered, and is identifiable by the fact
that its |name| is empty.
@d root 0 /* |cl[root]| is the gateway to the unsettled items */
@ An option is identified not by name but by the names of the items it contains.
Here is a routine that prints an option, given a pointer to any of its
nodes. It also prints the position of the option in its item list.
@<Sub...@>=
void print_option(int p,FILE *stream) {
register int k,q,cc;
if (p<last_itm || p>=last_node || nd[p].itm<=0) {
fprintf(stderr,"Illegal option "O"d!\n",p);
return;
}
for (q=p,cc=nd[q].itm;;) {
fprintf(stream," "O".8s",cl[cc].name);
if (nd[q].color)
fprintf(stream,":"O"c",nd[q].color>0? siginx[cl[cc].sig+nd[q].color].orig:
siginx[cl[cc].sig+nd[cc].color].orig);
q++;
cc=nd[q].itm;
if (cc<=0) q=nd[q].up,cc=nd[q].itm; /* |-cc| is actually the option number */
if (q==p) break;
}
for (q=nd[nd[p].itm].down,k=1;q!=p;k++) {
if (q==nd[p].itm) {
fprintf(stream," (?)\n");@+return; /* option not in its item list! */
}@+else q=nd[q].down;
}
fprintf(stream," ("O"d of "O"d)\n",k,nd[nd[p].itm].len);
}
@#
void prow(int p) {
print_option(p,stderr);
}
@ When I'm debugging, I might want to look at one of the current item lists.
@<Sub...@>=
void print_itm(int c) {
register int p;
if (c<root || c>=last_itm) {
fprintf(stderr,"Illegal item "O"d!\n",c);
return;
}
if (c<second)
fprintf(stderr,"Item "O".8s, length "O"d, neighbors "O".8s and "O".8s:\n",
cl[c].name,nd[c].len,cl[cl[c].prev].name,cl[cl[c].next].name);
else fprintf(stderr,"Item "O".8s, length "O"d:\n",cl[c].name,nd[c].len);
for (p=nd[c].down;p>=last_itm;p=nd[p].down) prow(p);
}
@ Speaking of debugging, here's a routine to check if redundant parts of our
data structure have gone awry.
@d sanity_checking 0 /* set this to 1 if you suspect a bug */
@<Sub...@>=
void sanity(void) {
register int k,p,q,pp,qq,t;
for (q=root,p=cl[q].next;;q=p,p=cl[p].next) {
if (cl[p].prev!=q) fprintf(stderr,"Bad prev field at itm "O".8s!\n",
cl[p].name);
if (p==root) break;
@<Check item |p|@>;
}
}
@ @<Check item |p|@>=
for (qq=p,pp=nd[qq].down,k=0;;qq=pp,pp=nd[pp].down,k++) {
if (nd[pp].up!=qq) fprintf(stderr,"Bad up field at node "O"d!\n",pp);
if (pp==p) break;
if (nd[pp].itm!=p) fprintf(stderr,"Bad itm field at node "O"d!\n",pp);
}
if (nd[p].len!=k) fprintf(stderr,"Bad len field in item "O".8s!\n",
cl[p].name);
@*Inputting the matrix. Brute force is the rule in this part of the code,
whose goal is to parse and store the input data and to check its validity.
@d panic(m) {@+fprintf(stderr,""O"s!\n"O"d: "O".99s\n",m,p,buf);@+exit(-666);@+}
@<Input the item names@>=
if (max_nodes<=2*max_cols) {
fprintf(stderr,"Recompile me: max_nodes must exceed twice max_cols!\n");
exit(-999);
} /* every item will want a header node and at least one other node */
while (1) {
if (!fgets(buf,bufsize,stdin)) break;
if (o,buf[p=strlen(buf)-1]!='\n') panic("Input line way too long");
for (p=0;o,isspace(buf[p]);p++) ;
if (buf[p]=='|' || !buf[p]) continue; /* bypass comment or blank line */
last_itm=1;
break;
}
if (!last_itm) panic("No items");
for (;o,buf[p];) {
for (j=0;j<8 && (o,!isspace(buf[p+j]));j++) {
if (buf[p+j]==':' || buf[p+j]=='|')
panic("Illegal character in item name");
o,cl[last_itm].name[j]=buf[p+j];
}
if (j==8 && !isspace(buf[p+j])) panic("Item name too long");
@<Check for duplicate item name@>;
@<Initialize |last_itm| to a new item with an empty list@>;
for (p+=j+1;o,isspace(buf[p]);p++) ;
if (buf[p]=='|') {
if (second!=max_cols) panic("Item name line contains | twice");
second=last_itm;
for (p++;o,isspace(buf[p]);p++) ;
}
}
if (second==max_cols) second=last_itm;
oo,cl[last_itm].prev=last_itm-1, cl[last_itm-1].next=last_itm;
oo,cl[second].prev=last_itm,cl[last_itm].next=second;
/* this sequence works properly whether or not |second=last_itm| */
oo,cl[root].prev=second-1, cl[second-1].next=root;
last_node=last_itm; /* reserve all the header nodes and the first spacer */
/* we have |nd[last_node].itm=0| in the first spacer */
@ @<Check for duplicate item name@>=
for (k=1;o,strncmp(cl[k].name,cl[last_itm].name,8);k++) ;
if (k<last_itm) panic("Duplicate item name");
@ @<Initialize |last_itm| to a new item with an empty list@>=
if (last_itm>max_cols) panic("Too many items");
oo,cl[last_itm-1].next=last_itm,cl[last_itm].prev=last_itm-1;
/* |nd[last_itm].len=0| */
o,nd[last_itm].up=nd[last_itm].down=last_itm;
last_itm++;
@ I'm putting the option number into the spacer that follows it, as a
possible debugging aid. But the program doesn't currently use that information.
@<Input the options@>=
while (1) {
if (!fgets(buf,bufsize,stdin)) break;
if (o,buf[p=strlen(buf)-1]!='\n') panic("Option line too long");
for (p=0;o,isspace(buf[p]);p++) ;
if (buf[p]=='|' || !buf[p]) continue; /* bypass comment or blank line */
i=last_node; /* remember the spacer at the left of this option */
for (pp=0;buf[p];) {
for (j=0;j<8 && (o,!isspace(buf[p+j])) && buf[p+j]!=':';j++)
o,cl[last_itm].name[j]=buf[p+j];
if (!j) panic("Empty item name");
if (j==8 && !isspace(buf[p+j]) && buf[p+j]!=':')
panic("Item name too long");
if (j<8) o,cl[last_itm].name[j]='\0';
@<Create a node for the item named in |buf[p]|@>;
if (buf[p+j]!=':') o,nd[last_node].color=0;
else if (k>=second) {
if ((o,isspace(buf[p+j+1])) || (o,!isspace(buf[p+j+2])))
panic("Color must be a single character");
o,nd[last_node].color=(unsigned char)buf[p+j+1];
p+=2;
}@+else panic("Primary item must be uncolored");
for (p+=j+1;o,isspace(buf[p]);p++) ;
}
if (!pp) {
if (vbose&show_warnings)
fprintf(stderr,"Option ignored (no primary items): "O"s",buf);
while (last_node>i) {
@<Remove |last_node| from its item list@>;
last_node--;
}
}@+else {
o,nd[i].down=last_node;
last_node++; /* create the next spacer */
if (last_node==max_nodes) panic("Too many nodes");
options++;
o,nd[last_node].up=i+1;
o,nd[last_node].itm=-options;
}
}
@ @<Create a node for the item named in |buf[p]|@>=
for (k=0;o,strncmp(cl[k].name,cl[last_itm].name,8);k++) ;
if (k==last_itm) panic("Unknown item name");
if (o,nd[k].aux>=i) panic("Duplicate item name in this option");
last_node++;
if (last_node==max_nodes) panic("Too many nodes");
o,nd[last_node].itm=k;
if (k<second) pp=1;
o,t=nd[k].len+1;
@<Insert node |last_node| into the list for item |k|@>;
@ Insertion of a new node is simple, unless we're randomizing.
In the latter case, we want to put the node into a random position
of the list.
We store the position of the new node into |nd[k].aux|, so that
the test for duplicate items above will be correct.
As in other programs developed for TAOCP, I assume that four mems are
consumed when 31 random bits are being generated by any of the {\mc GB\_FLIP}
routines.
@<Insert node |last_node| into the list for item |k|@>=
o,nd[k].len=t; /* store the new length of the list */
nd[k].aux=last_node; /* no mem charge for |aux| after |len| */
if (!randomizing) {
o,r=nd[k].up; /* the ``bottom'' node of the item list */
ooo,nd[r].down=nd[k].up=last_node,nd[last_node].up=r,nd[last_node].down=k;
}@+else {
mems+=4,t=gb_unif_rand(t); /* choose a random number of nodes to skip past */
for (o,r=k;t;o,r=nd[r].down,t--) ;
ooo,q=nd[r].up,nd[q].down=nd[r].up=last_node;
o,nd[last_node].up=q,nd[last_node].down=r;
}
@ @<Remove |last_node| from its item list@>=
o,k=nd[last_node].itm;
oo,nd[k].len--,nd[k].aux=i-1;
o,q=nd[last_node].up,r=nd[last_node].down;
oo,nd[q].down=r,nd[r].up=q;
@ @<Report the successful completion of the input phase@>=
fprintf(stderr,
"("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",
options,second-1,last_itm-second,last_node-last_itm);
@ The item lengths after input should agree with the item lengths
after this program has finished. I print them (on request), in order to
provide some reassurance that the algorithm isn't badly screwed up.
@<Report the item totals@>=
{
fprintf(stderr,"Item totals:");
for (k=1;k<last_itm;k++) {
if (k==second) fprintf(stderr," |");
fprintf(stderr," "O"d",nd[k].len);
}
fprintf(stderr,"\n");
}
@*The memo cache. This program has special data structures by which we
can tell if the current covering-and-purification status matches
a previous status. Each status is converted to a multibit signature,
with one bit for each primary item, and possibly several bits for
each second item that can be colored in several ways. Every potential
contribution to the signature is specified by an 8-byte \&{inx} structure.
@<Type...@>=
typedef struct inx_struct {
int hash; /* bits used to randomize the signature */
short code; /* what bits should be set in that octabyte? */
char shift; /* by how much should be |code| be shifted? */
char orig; /* the original character used for a color */
} inx;
@ A large hash table is used to help decide which signatures are currently
known. Its entries are octabytes with two fields:
@<Type...@>=
typedef struct hash_struct {
int sig; /* where the signature can be found in the |cache| array */
int zddref; /* the ZDD node that corresponds to this signature */
} hashentry;
@ A multibit signature consists of one or more octabytes, all but the
last of which have the sign bit set. It is preceded in |cache| by
an octabyte that contains the count of all solutions represented by
its ZDD node.
@<Glob...@>=
inx siginx[max_inx]; /* indexes for making signatures */
int sigptr; /* this many |siginx| entries are in use */
int sigsiz; /* this many octabytes per signature */
hashentry *hash; /* hash table for locating signatures */
int hashcount; /* this many items are in the hash table */
ullng *cache; /* the memo cache */
unsigned int cacheptr; /* this many octabytes of |cache| are in use */
unsigned int oldcacheptr; /* this many were in use a moment ago */
unsigned int zddnodes=2; /* total ZDD nodes created */
unsigned int memos; /* this many configurations were cached */
unsigned int goodmemos; /* of which this many had solutions */
ullng hits; /* total number of cache hits */
char usedcolor[256],colormap[256]; /* tables for color code renumbering */
@ The colors of a secondary item are mapped into small positive integers,
so that the signature will be compact. For example, if
the colors are \.a and~\.b, we'll change them to 1 and~2; but the
original names will be remembered in the |orig| field.
In this case there will be three |code| values, occupying two bits
of the signature: |code=1| when the item is unpurified; |code=2|
when it has been purified to~1; |code=3| when it has been purified to~2.
The |siginx| table entry for item |k| is accessed by
|cl[k].sig| when |k| is primary, or by
|cl[k].sig+nd[k].color| when |k| is secondary.
That entry will tell us what bits should be contributed to
octabyte |cl[k].offset| of the overall multibit signature,
and it will also contribute to the 32-bit hash code of the full signature.
@ We give the smallest offsets to the items with the largest numbers,
hoping that many of the signatures will be cached after
all of the small-numbered items have been covered.
@d overflow(p,pname) {@+fprintf(stderr,
"Overflow in cache memory ("O"s="O"d)!\n",pname,p);@+exit(-667);@+}
@<Initialize the memo cache@>=
hash=(hashentry*)malloc(hashsize*sizeof(hashentry));
if (!hash) {
fprintf(stderr,"Couldn't allocate the hash table (hashsize="O"d)!\n",
hashsize);
exit(-68);
}
cache=(ullng*)malloc(max_cache*sizeof(ullng));
if (!cache) {
fprintf(stderr,"Couldn't allocate the cache memory (max_cache="O"d)!\n",
max_cache);
exit(-69);
}
q=1,r=0; /* offset and position within the multibit signature */
for (k=last_itm-1;k;k--)
if (k<second) @<Prepare for a primary item signature@>@;
else @<Prepare for a secondary item signature@>;
sigsiz=q+1;
@ @<Prepare for a primary item signature@>=
{
if (r==63) q++,r=0; /* the sign bit is used for continuations */
o,siginx[sigptr].shift=r,siginx[sigptr].code=1;
mems+=4,siginx[sigptr].hash=gb_next_rand();
o,cl[k].sig=sigptr++,cl[k].offset=q;
if (sigptr>=max_inx) overflow(max_inx,"max_inx");
r++;
}
@ @<Prepare for a secondary item signature@>=
{
if (o,nd[k].down==k) { /* unused secondary item */
register l,r;
o,l=cl[k].prev,r=cl[k].next;
oo,cl[l].next=r,cl[r].prev=l;
continue; /* it disappears */
}
o,nd[k].color=0;
cc=1;
for (p=nd[k].down;p>k;o,p=nd[p].down) {
o,i=nd[p].color;
if (i) {
o,t=usedcolor[i];
if (!t) oo,colormap[cc]=i,usedcolor[i]=cc++;
o,nd[p].color=usedcolor[i]; /* the original color is permanently changed */
}
}
for (t=1;cc>=(1<<t);t++) ;
/* $t=\lfloor\lg|cc|\rfloor+1$ slots in the signature */
if (sigptr+t>=max_inx) overflow(max_inx,"max_inx");
if (r+t>=63) q++,r=0;
for (i=0;i<cc;i++) {
o,siginx[sigptr+i].shift=r,siginx[sigptr+i].code=1+i;
oo,siginx[sigptr+i].orig=colormap[i],usedcolor[colormap[i]]=0;
mems+=4,siginx[sigptr+i].hash=gb_next_rand();
o,cl[k].sig=sigptr,cl[k].offset=q;
}
sigptr+=cc,r+=t;
}
@ @d signbit 0x8000000000000000
@<Look for the current status in the memo cache@>=
{
register ullng sigacc;
register unsigned int sighash;
register int off,sig,offset;
if (cacheptr+sigsiz>=max_cache) overflow(max_cache,"max_cache");
sighash=0,off=1,sigacc=0;
for (o,k=cl[last_itm].prev;k!=last_itm;o,k=cl[k].prev)
@<Contribute a secondary item to the signature@>;
for (o,k=cl[root].prev;k!=root;o,k=cl[k].prev)
@<Contribute a primary item to the signature@>;
o,cache[cacheptr+off]=sigacc;
@<Do the hash lookup@>;
}
@ @<Contribute a primary item to the signature@>=
{
o,sig=cl[k].sig,offset=cl[k].offset;
while (off<offset) {
o,cache[cacheptr+off]=sigacc|signbit;
off++,sigacc=0;
}
o,sighash+=siginx[sig].hash;
sigacc+=1LL<<siginx[sig].shift; /* |siginx[sig].code=1| */
}
@ @<Contribute a secondary item to the signature@>=
{
if (o,nd[k].len==0) continue;
o,sig=cl[k].sig,offset=cl[k].offset;
while (off<offset) {
o,cache[cacheptr+off]=sigacc|signbit;
off++,sigacc=0;
}
o,sig+=nd[k].color;
o,sighash+=siginx[sig].hash;
sigacc+=((long long)siginx[sig].code)<<siginx[sig].shift;
}
@ Here I use Algorithm 6.4D in the hash table,
``open addressing with double hashing,''
because I want to refresh my brain's memory of that technique. (It
conserves my computer's memory nicely,
and avoids the primary clustering of simpler methods.)
@d hashmask ((1<<loghashsize)-1)
@<Do the hash lookup@>=
{
register int h,hh,s,l;
hh=(sighash>>(loghashsize-1))|1;
for (h=sighash&hashmask;;h=(h+hh)&hashmask) {
o,s=hash[h].sig;
if (!s) break;
for (l=0;;l++) {
if (oo,cache[s+l]!=cache[cacheptr+1+l]) break;
if (cache[s+l]&signbit) continue;
goto cache_hit;
}
}
if (++hashcount>=hashsize) overflow(hashsize,"hashsize");
o,hash[h].sig=cacheptr+1; /* |cache[cacheptr]| will hold a count */
oldcacheptr=cacheptr, cacheptr+=q+1;
memos++;
o,hashloc[level]=h;
hit=0;
goto cache_miss;
cache_hit: hit=1+h;
cache_miss: ;
}
@ The following code is executed after completing the computation on a
level that has found at least one solution. The memo cache entry for
that level is |hashloc[level]|, and the ZDD node representing all those
solutions is |znode|.
@<Cache the successful |znode|@>=
{
register int h;
o,h=hashloc[level];
o,hash[h].zddref=znode;
goodmemos++;
ooo,cache[hash[h].sig-1]=count-entrycount[level];
}
@ To celebrate a cache hit, we emulate all of the relevant previous computation
at high speed.
@<Use previous ZDD data in place of this level's computation@>=
{
register ullng c;
o,znode=hash[hit-1].zddref;
if (vbose&show_hits) fprintf(stderr,
"Hit[%x] (zdd="O"x, sols="O"lld)\n",
hash[hit-1].sig-1,znode,cache[hash[hit-1].sig-1]);
if (znode) {
o,c=cache[hash[hit-1].sig-1]; /* this many new solutions are hereby found */
count+=c;
if (count>=maxcount) timeout=0; /* exit as soon as possible */
if (count<c)
fprintf(stderr,"(the solution count has overflowed!)\n");
}
hits++;
goto backdown;
}
@*The dancing.
Our strategy for generating all exact covers will be to repeatedly
choose always the item that appears to be hardest to cover, namely the
item with shortest list, from all items that still need to be covered.
And we explore all possibilities via depth-first search.
The neat part of this algorithm is the way the lists are maintained.
Depth-first search means last-in-first-out maintenance of data structures;
and it turns out that we need no auxiliary tables to undelete elements from
lists when backing up. The nodes removed from doubly linked lists remember
their former neighbors, because we do no garbage collection.
The basic operation is ``covering an item.'' This means removing it
from the list of items needing to be covered, and ``hiding'' its
options: removing nodes from other lists whenever they belong to an option of
a node in this item's list.
@<Solve the problem@>=
level=0;
forward: nodes++;
if (vbose&show_profile) profile[level]++;
if (sanity_checking) sanity();
@<Do special things if enough |mems| have accumulated@>;
@<Look for the current status...@>;
if (hit) @<Use previous ZDD data in place of this level's computation@>;
o,entrycount[level]=count;
znode=0;
@<Set |best_itm| to the best item for branching@>;
cover(best_itm);
oo,cur_node=choice[level]=nd[best_itm].down;
advance:@+if (cur_node==best_itm) goto backup;
if ((vbose&show_choices) && level<show_choices_max) {
fprintf(stderr,"L"O"d:",level);
print_option(cur_node,stderr);
}
@<Cover all other items of |cur_node|@>;
if (o,cl[root].next==root) @<Register a solution and |goto recover|@>;
o,savez[level]=znode;
if (++level>maxl) {
if (level>=max_level) {
fprintf(stderr,"Too many levels!\n");
exit(-4);
}
maxl=level;
}
goto forward;
backup: uncover(best_itm);
if (znode) @<Cache the successful |znode|@>;
backdown:@+if (level==0) goto done;
level--;
oo,cur_node=choice[level],best_itm=nd[cur_node].itm;
o,zsol=znode,znode=savez[level];
recover: @<Uncover all other items of |cur_node|@>;
if (zsol) @<Make a new ZDD node@>;
if (timeout==0) goto backup;
oo,cur_node=choice[level]=nd[cur_node].down;@+goto advance;
@ @<Glob...@>=
int level; /* number of choices in current partial solution */
int choice[max_level]; /* the node chosen on each level */
int savez[max_level]; /* current |znode| on each level */
ullng profile[max_level]; /* number of search tree nodes on each level */
ullng entrycount[max_level]; /* |count| when a new level commences */
int hashloc[max_level]; /* hash location for cached computations at each level */
@ @<Do special things if enough |mems| have accumulated@>=
if (delta && (mems>=thresh)) {
thresh+=delta;
if (vbose&show_full_state) print_state();
else print_progress();
}
if (mems>=timeout) {
fprintf(stderr,"TIMEOUT!\n"); timeout=0;
}
@ When an option is hidden, it leaves all lists except the list of the
item that is being covered. Thus a node is never removed from a list
twice.
Program {\mc DLX2} improved its performance by not removing nodes
from secondary items that have been purified. In {\mc DLX6} we don't
want to do this, because we want the |len| field of secondary
items to drop to zero when none of the active options use them.
(Such items are irrelevant to the cached status.)
But we can save part of the work, by decreasing |len| without
altering |up| or |down|.
Furthermore, when the |len| field of a secondary item does drop to zero,
we want to remove it from the list of ``active'' secondary items.
@<Sub...@>=
void cover(int c) {
register int cc,l,r,rr,nn,uu,dd,t;
o,l=cl[c].prev,r=cl[c].next;
oo,cl[l].next=r,cl[r].prev=l;
updates++;
for (o,rr=nd[c].down;rr>=last_itm;o,rr=nd[rr].down)
for (nn=rr+1;nn!=rr;) {
o,cc=nd[nn].itm;
if (cc<=0) {
o,nn=nd[nn].up;@+continue;
}
if (nd[nn].color>=0) {
o,uu=nd[nn].up,dd=nd[nn].down;
oo,nd[uu].down=dd,nd[dd].up=uu;
}
updates++;
o,t=nd[cc].len-1;
o,nd[cc].len=t;
if (t==0 && cc>=second) {
o,l=cl[cc].prev,r=cl[cc].next;
oo,cl[l].next=r,cl[r].prev=l;
}
nn++;
}
}
@ Here we uncover an item by processing its options from bottom to top,
thus undoing in the reverse order of doing.
@<Subroutines@>=
void uncover(int c) {
register int cc,l,r,rr,nn,uu,dd,t;
for (o,rr=nd[c].up;rr>=last_itm;o,rr=nd[rr].up)
for (nn=rr-1;nn!=rr;) {
o,cc=nd[nn].itm;
if (cc<=0) {
o,nn=nd[nn].down;@+continue;
}
if (nd[nn].color>=0) {
o,uu=nd[nn].up,dd=nd[nn].down;
oo,nd[uu].down=nd[dd].up=nn;
}
o,t=nd[cc].len+1;
o,nd[cc].len=t;
if (t==1 && cc>=second) {
o,l=cl[cc].prev,r=cl[cc].next;
oo,cl[l].next=cl[r].prev=cc;
}
nn--;
}
o,l=cl[c].prev,r=cl[c].next;
oo,cl[l].next=cl[r].prev=c;
}
@ A subtle point arises here: When |best_itm| was covered, or when
a previous item in the option for |cur_node| was covered or purified,
we may have removed
all of the remaining nodes for some secondary item, and deleted that item
from the list of active secondaries. We don't want to cover or purify it
in such cases, since that would delete it twice.
@<Cover all other items of |cur_node|@>=
for (pp=cur_node+1;pp!=cur_node;) {
o,cc=nd[pp].itm;
if (cc<=0) o,pp=nd[pp].up;
else {
if (cc<second || (o,nd[cc].len)) {
if (!nd[pp].color) cover(cc);
else if (nd[pp].color>0) purify(pp);
}
pp++;
}
}
@ We must go leftward as we uncover the items, because we went
rightward when covering them.
And the logic above requires another subtle point: We must
not allow |purify(pp)| to change the length of |nd[pp].itm|
from nonzero to zero. (Otherwise we couldn't unpurify it.)
@<Uncover all other items of |cur_node|@>=
for (pp=cur_node-1;pp!=cur_node;) {
o,cc=nd[pp].itm;
if (cc<=0) o,optionno=1-cc,pp=nd[pp].down;
else {
if (cc<second || (o,nd[cc].len)) {
if (!nd[pp].color) uncover(cc);
else if (nd[pp].color>0) unpurify(pp);
}
pp--;
}
}
@ When we choose an option that specifies colors in one or more items,
we ``purify'' those items by removing all incompatible options.
All options that want the chosen color in a purified item are temporarily
given the color code~|-1| so that they won't be purified again.
The purified item's list stays intact, so that we can unpurify it later.
But we adjust the |len|, so that only active options are counted.
@<Sub...@>=
void purify(int p) {
register int cc,rr,nn,uu,dd,t,x,tt;
o,cc=nd[p].itm,x=nd[p].color;
o,nd[cc].color=x;
o,tt=nd[cc].len;
cleansings++;
for (o,rr=nd[cc].down;rr>=last_itm;o,rr=nd[rr].down) {
if (rr==p) fprintf(stderr,"confusion!\n");
if (o,nd[rr].color!=x) {
tt--;
for (nn=rr+1;nn!=rr;) {
o,cc=nd[nn].itm;
if (cc<=0) {
o,nn=nd[nn].up;@+continue;
}
if (nd[nn].color>=0) {
o,uu=nd[nn].up,dd=nd[nn].down;
oo,nd[uu].down=dd,nd[dd].up=uu;
}
updates++;
o,t=nd[cc].len-1;
o,nd[cc].len=t;
if (t==0 && cc>=second) {