-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added another version of the data cleaning script for sci-sat
- Loading branch information
Showing
1 changed file
with
233 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Tue Jul 21 12:45:19 2020 | ||
@author: Camille | ||
""" | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import datetime | ||
from scipy.io import netcdf #### <--- This is the library to import. | ||
import matplotlib.pyplot as plt | ||
import os | ||
import matplotlib.dates as mdates | ||
os.environ['PROJ_LIB'] = r'C:\Users\Siavash\Documents\sci-sat' | ||
|
||
def opendf (path_to_file,file_name,gaz): | ||
nc = netcdf.netcdf_file(path_to_file+'//'+file_name,'r') | ||
|
||
#aller chercher les variables | ||
fillvalue = -999. # Fill value from User Guide | ||
months=np.copy(nc.variables['month'][:]) | ||
years = np.copy(nc.variables['year'][:]) | ||
days = np.copy(nc.variables['day'][:]) | ||
hours = np.copy(nc.variables['hour'][:]) | ||
lat = np.copy(nc.variables['latitude'][:]) | ||
long =np.copy( nc.variables['longitude'][:]) | ||
alt = np.copy(nc.variables['altitude'][:]) | ||
|
||
data = np.copy(nc.variables[gaz][:]) #valeurs de concentration [ppv] | ||
data_error = np.copy(nc.variables[gaz+'_error'][:]) | ||
|
||
if (len(np.where(data!=-999.0)[0])==0 & len(np.where(data!=-999.0)[1])==0): | ||
print('NO DATA FOUND FOR GAS: ' + gaz) | ||
return [],[] | ||
|
||
else: | ||
data[data == fillvalue] = np.nan #Remplacer les données vides | ||
data_error[data_error == fillvalue] = np.nan #Remplacer les données vides | ||
|
||
#Initialize Dataframe / Initialisation du DataFrame | ||
df = pd.DataFrame(data,columns=alt) | ||
dferr = pd.DataFrame(data_error,columns=alt) | ||
# df = pd.concat([df,dferr],axis=1) | ||
# df = pd.concat([dfdata, dferr], axis=1) | ||
#Data cleaning / Nettoyage des données | ||
#Colonne de dates | ||
date=[] | ||
for i in range (len(days)): | ||
date.append(datetime.datetime(years[i],months[i],days[i]))#,hour=hours[i])) | ||
#Attribution des colonnes | ||
data_meanAlt = np.nanmean(data,1) #moyenne sur l'altitude | ||
data_std = np.nanstd(data,1) | ||
df['Alt_Mean'] = data_meanAlt | ||
df['std '+gaz] = data_std | ||
df['date'] = date | ||
df['lat'] = lat | ||
df['long'] = long | ||
#df['error']=data_error | ||
# df=df.groupby('lat').mean() | ||
# df=df.groupby(df.index.floor('D')).mean() | ||
# df.reset_index(level=0, inplace=True) | ||
# df=df.groupby('long').mean() | ||
# df.reset_index(level=0,inplace=True) | ||
|
||
return df,dferr | ||
|
||
def dohist(path,file): | ||
#Path to file (change directory) | ||
|
||
gaz = file.strip().split('.')[0].strip().split('_')[3:] | ||
if len(gaz)>1: | ||
gaz = gaz[0]+'_'+gaz[1] | ||
else: | ||
gaz=gaz[0] | ||
df,dferr= opendf(path,file,gaz) | ||
|
||
if len(df)!=0: | ||
|
||
# data = df[df.columns.values[:150]].values | ||
|
||
# plt.hist(data.ravel(),bins=100,range=(np.nanmin(data),np.nanmax(data))) | ||
# plt.grid() | ||
# plt.xlabel('Concentration [ppv]') | ||
# plt.ylabel('Distribution') | ||
# plt.title(gaz+' Distribution No Filter') | ||
# plt.savefig(gaz+' Distribution NoFilter.png') | ||
# plt.show() | ||
|
||
|
||
############################################################################## | ||
#Visualizations to compare cleaned vs not cleaned data | ||
############################################################################## | ||
|
||
# VISUALISATION FILTER FLAGGED ERRORS (-888) | ||
|
||
dfff = df.copy() | ||
|
||
for i in range(150): | ||
dfff.iloc[:,i][dferr.iloc[:,i]==-888.]=np.nan | ||
|
||
data=dfff.iloc[:,:150].values | ||
data_meanAlt = np.nanmean(data,1) #moyenne sur l'altitude | ||
dfff['Alt_Mean'] = data_meanAlt | ||
|
||
# fig = plt.figure() | ||
# plt.hist(data.ravel()[~np.isnan(data.ravel())],bins=100,range=(np.nanmin(data),np.nanmax(data))) | ||
# plt.grid() | ||
# plt.xlabel('Concentration [ppv]') | ||
# plt.ylabel('Distribution') | ||
# plt.title(gaz+' Distribution Filter only -888') | ||
# # pdf.savefig(fig) | ||
# plt.savefig(gaz+' Distribution Filter-888.pdf') | ||
|
||
# plt.show() | ||
|
||
|
||
# # VISUALISATION FILTER WITH MEAN AND STD, WINDOW = 50 | ||
df = df.groupby(['date','lat','long']).mean() | ||
datamean = df.rolling(window=50,center=True ).mean() | ||
datastd = df.rolling(window=50,center=True).std() | ||
datamed = df.rolling(window=50,center=True).median() | ||
|
||
newdata = df.where(((df > datamean.sub(datastd.mul(2))) & (df < datamean.add(datastd.mul(2))))) #2xSTD | ||
newdata=newdata.reset_index() | ||
plt.hist(newdata.iloc[:,3:-2].values.ravel(),bins=100)# HISTOGRAM OF DATA DISTRIBUTION | ||
plt.grid() | ||
plt.xlabel('Concentration [ppv]') | ||
plt.ylabel('Distribution') | ||
plt.title(gaz+' Distribution Filter with window=50 and 2 x std ') | ||
plt.savefig(gaz+' Distribution Filter2xSTD.pdf') | ||
plt.show() | ||
|
||
# newdata = df.where(((df > datamed.sub(datastd.mul(3))) & (df < datamed.add(datastd.mul(3))))) | ||
# newdata=newdata.reset_index() | ||
# plt.hist(newdata.iloc[:,3:-2].values.ravel(),bins=100)#,range=(np.nanmin(newdata),np.nanmax(newdata))) | ||
# plt.grid() | ||
# plt.xlabel('Concentration [ppv]') | ||
# plt.ylabel('Distribution') | ||
# plt.title(gaz+' Distribution Filter with window=50 and 3 x MAD ') | ||
# plt.savefig(gaz+' Distribution Filter3xMAD.pdf') | ||
# plt.show() | ||
|
||
|
||
|
||
path = r'C:\Users\Siavash\Documents\sci-sat' #PATH TO MY DATA FOLDER | ||
#%% | ||
|
||
# CALLING THE FUNCTIONS TO CLEAN THE DATA WITH THE FILES. | ||
|
||
files = [] | ||
path_to_folder = r'C:\Users\Siavash\Documents\sci-sat' | ||
|
||
#LOOP ON ALL FILES | ||
for i in os.listdir(path_to_folder): | ||
if i.endswith('.nc'): | ||
files.append(i) | ||
|
||
#ONLY ONE FILE | ||
# file = 'ACEFTS_L2_v4p0_O3.nc' | ||
# dohist(path,files[0]) | ||
# gaz = files[0].strip().split('.')[0].strip().split('_')[-1] | ||
# df,dferr= opendf(path,files[0],gaz) | ||
files = np.array(files) | ||
files = files[np.where(files!='ACEFTS_L2_v4p1_GLC.nc')] #Take out Geoloc data | ||
# files = files[np.where(files!='ACEFTS_L2_v4p0_T.nc')] #Take out Temperature data | ||
|
||
for file in files[0:1]: | ||
dohist(path,file) | ||
|
||
|
||
#%% TEST WITH ONLY 1 FILE | ||
|
||
file = 'ACEFTS_L2_v4p1_O3.nc' | ||
newfile = file[:-3] + '.csv' | ||
gaz = file.strip().split('.')[0].strip().split('_')[3:] | ||
if len(gaz)!=1: | ||
gaz = gaz[0]+'_'+gaz[1] | ||
else : | ||
gaz=gaz[0] | ||
df,dferr= opendf(path,file,gaz) | ||
# dohist(path,file) | ||
|
||
df = df.groupby(['date','lat','long']).mean() | ||
datamean = df.rolling(window=50,center=True,min_periods = 20 ).mean() | ||
datastd = df.rolling(window=50,center=True,min_periods = 20).std() | ||
|
||
|
||
""" | ||
df math functions : | ||
add: + | ||
sub: - | ||
mul: * | ||
div: / | ||
mod: // | ||
pow: % | ||
""" | ||
newdata = df.where(((df > datamean.sub(datastd.mul(1.5))) & (df < datamean.add(datastd.mul(1.5))))) | ||
newdata=newdata.reset_index() | ||
newdata.to_csv(newfile, encoding='utf-8', index=False) | ||
print('test') | ||
plt.hist(newdata.iloc[:,3:-2].values.ravel(),bins=100)#,range=(np.nanmin(newdata.iloc[:,3:-2]),np.nanmax(newdata.iloc[:,3:-2]))) | ||
plt.grid() | ||
plt.xlabel('Concentration [ppv]') | ||
plt.ylabel('Distribution') | ||
plt.title(gaz+' Distribution with Filter') | ||
# plt.savefig(gaz+' Distribution NoFilter.png') | ||
plt.show() | ||
|
||
#%% VISUALIZATION WITH TIME SERIES | ||
def time_series1(df): | ||
|
||
fig, ax = plt.subplots(figsize=((35,7))) #Create fig | ||
ax.plot(df['Alt_Mean'],'b.') #Plot data | ||
|
||
return fig,ax | ||
|
||
# VISUALISATION NO FILTER | ||
|
||
dff = newdata.groupby('date').mean() | ||
fig,ax = time_series1(dff) | ||
|
||
date_form = mdates.DateFormatter("%Y") # Define the date format for x axis | ||
ax.xaxis.set_major_formatter(date_form) | ||
plt.grid(which='both',linestyle='--',linewidth=1.5) #add grid | ||
# plt.ylabel('O3 Concentration (ppv)',fontsize=23) # y-axis label | ||
plt.xlabel('Year',fontsize=23) #x-axis label | ||
plt.xticks(fontsize=20) | ||
plt.yticks(fontsize=20) | ||
plt.title('Filtering',fontsize=20) | ||
# plt.savefig('_withFilter.png') | ||
plt.show() | ||
|