-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_evaluate.py
774 lines (666 loc) · 33 KB
/
run_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import os
import json
import fire
from typing import Optional
from multiprocessing import Pool
from typing import List, Dict
from tqdm.auto import tqdm, trange
from bert_score import BERTScorer
import evaluate
from datasets import load_dataset
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import set_seed
import pandas as pd
from run_special_tokens_clm import process_with_tokens
# don't need now
# from trlx.model.nn.ilql_models import CausalLMWithValueHeads
# from trlx.data.configs import TRLConfig
# from trlx.utils.evaluate import prepare_model_input
# from dialogue_rl.utils.conversation import (
# convo_to_context_response_pairs_abcd,
# convo_to_context_response_pairs_multi_woz,
# convo_to_context_response_pairs_taskmaster3,
# )
from model.constants import *
def chunk(l, size=16):
# looping till length l
for i in range(0, len(l), size):
yield l[i:i + size]
from itertools import chain, islice
def chunks(iterable, size=16):
iterator = iter(iterable)
for first in iterator:
yield chain([first], islice(iterator, size - 1))
from functools import partial
def convo_to_context_response_pairs_workflow_response(
sample: Dict,
use_special_tokens: bool = False
):
#print(samples)
#exit()
context_response_pairs: List[Dict] = []
#for idx, sample in enumerate(samples):
#print(idx)
#print(sample)
#sender_type, utterance = row
#if (sender_type == 'agent'):
# context = convo_to_text_abcd(utterance_rows[:idx])
if "system: " in sample["target"]:
context = sample["input"]+"\nsystem: "
utterance = sample["target"][len("system: "):].strip()#.strip("system:").strip()
# utterance = sample["target"].strip("system:").strip() # this was nuking "yes"
elif "wf-action: " in sample["target"]:
context = sample["input"]+"\nwf-action: "
utterance = sample["target"][len("wf-action: "):].strip()#.strip("system:").strip()
# utterance = sample["target"].strip("system:").strip() # this was nuking "yes"
else:
#print("context:", context)
#print("target:", sample["target"])
context = sample["input"]+"\n"
utterance = sample["target"].strip()
if False:
print("="*30)
print("context:",context)
print("response:",utterance)
dic = {'context': context, 'response': utterance}
if use_special_tokens:
text = dic["context"] + dic["response"]
text = process_with_tokens(text)
#print("text:", text)
s = text.split("|>")
s = [ x for x in s if x != ""]
#print(s)
a = s[-2]
#print(a)
if a.endswith("workflow"):
try:
# only considering workflow prediction here
context = text.split(WORKFLOW)[0] + " " + WORKFLOW
response = text.split(WORKFLOW)[1]#.split()[0]
except:
print("wot")
exit(1)
elif a.endswith("response"):
try:
# only considering workflow prediction here
context = text.split(RESPONSE)[0] + " " + RESPONSE
response = text.split(RESPONSE)[1]#.split()[0]
except:
print("wot")
exit(1)
else:
print("this should not happen gg")
print(a)
exit(1)
dic = {'context': context, 'response': response}
print(dic)
context_response_pairs.append(dic)
new = []
for dic in context_response_pairs:
context = dic["context"]
response = dic["response"]
if response.strip() == "":
print("="*30)
print("Context: ", context)
print("Empty reference: ", response)
else:
new += [dic]
context_response_pairs = new
df_context_response_pairs = pd.DataFrame(context_response_pairs)
return df_context_response_pairs
device = 'cuda' if torch.cuda.is_available() else 'cpu'
BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
def load_tf(model_path):
model = AutoModelForCausalLM.from_pretrained(model_path).eval().to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
return model, tokenizer
def load_ilql(config_path):
config = TRLConfig.load_yaml(config_path)
model = CausalLMWithValueHeads(
config.model.model_path, ilql_config=config.method).eval().to(device)
model_state_dict = torch.load(f"{config.train.checkpoint_dir}/pytorch_model.bin")
model.load_state_dict(model_state_dict)
tokenizer = AutoTokenizer.from_pretrained(config.model.model_path)
return model, tokenizer
def generate_dt(context, model, tokenizer, num_responses, context_len, response_len, scorer=False):
context = context.replace(f"{REP_START}", f"{REWARD_ONE}{REP_START}")
prompt = context.replace("> ", ">").replace(" <", "<")
prompt = prompt + f"{REWARD_ONE}{REP_START}"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
input_attn_mask = inputs.attention_mask.to(device)
input_ids = input_ids[:, -context_len:]
input_attn_mask = input_attn_mask[:, -context_len:]
# Always add greedy output
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
eos_token_id=tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
if num_responses > 1:
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
num_beams=num_responses-1,
num_return_sequences=num_responses-1,
eos_token_id=tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds.extend(tokenizer.batch_decode(output_ids, skip_special_tokens=True))
# preds = [p.replace(REP_END, "") for p in preds]
if scorer is True:
response_score_list = []
for pred in preds:
response_ids = tokenizer(pred, return_tensors="pt").input_ids.to(device)
context_response_ids = torch.cat((input_ids, response_ids), dim=1)
logits = model(context_response_ids).logits
response_logits = logits[0, input_ids.shape[-1]-1:-1, :]
response_scores = torch.index_select(response_logits, dim=1, index=response_ids.flatten()) # response_len x response_len
response_scores = torch.diagonal(response_scores) # response_len x 1
score = torch.sum(response_scores).item()
row_dict = {'score': score, 'response': pred}
response_score_list.append(row_dict)
response_score_df = pd.DataFrame(response_score_list)
response_score_df = response_score_df.sort_values(by = 'score', ascending=False)
preds = response_score_df['response'].to_list()
return preds
from transformers import StoppingCriteria, StoppingCriteriaList
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [198]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def generate_tf(context, model, tokenizer, num_responses, context_len, response_len, scorer=False):
prompt = context.replace("> ", ">").replace(" <", "<")
#prompt = prompt + f"{REP_START}" # now the training involves this token
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
input_attn_mask = inputs.attention_mask.to(device)
input_ids = input_ids[:, -context_len:]
input_attn_mask = input_attn_mask[:, -context_len:]
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
eos_token_id=tokenizer.eos_token_id, #tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id,
stopping_criteria=StoppingCriteriaList([StopOnTokens()]) # added
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
if num_responses > 1:
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
num_beams=num_responses-1,
num_return_sequences=num_responses-1,
eos_token_id=tokenizer.eos_token_id,#tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id,
stopping_criteria=StoppingCriteriaList([StopOnTokens()]) # added
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds.extend(tokenizer.batch_decode(output_ids, skip_special_tokens=True))
# preds = [p.replace(REP_END, "") for p in preds]
if scorer is True:
response_score_list = []
for pred in preds:
response_ids = tokenizer(pred, return_tensors="pt").input_ids.to(device)
context_response_ids = torch.cat((input_ids, response_ids), dim=1)
logits = model(context_response_ids).logits
response_logits = logits[0, input_ids.shape[-1]-1:-1, :]
response_scores = torch.index_select(response_logits, dim=1, index=response_ids.flatten()) # response_len x response_len
response_scores = torch.diagonal(response_scores) # response_len x 1
score = torch.sum(response_scores).item()
row_dict = {'score': score, 'response': pred}
response_score_list.append(row_dict)
response_score_df = pd.DataFrame(response_score_list)
response_score_df = response_score_df.sort_values(by = 'score', ascending=False)
preds = response_score_df['response'].to_list()
return preds
def generate_tf_batch(context, model, tokenizer, num_responses, context_len, response_len, scorer=False):
bsz = len(context)
prompt = [x.replace("> ", ">").replace(" <", "<") for x in context]
#prompt = prompt + f"{REP_START}"
"""
I added the following per https://discuss.huggingface.co/t/batch-generation-with-gpt2/1517/2
"""
tokenizer.padding_side = "left"
# Define PAD Token = EOS Token = 50256
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
inputs = tokenizer(prompt, return_tensors="pt", padding="longest", truncation=True)
input_ids = inputs.input_ids.to(device)
input_attn_mask = inputs.attention_mask.to(device)
input_ids = input_ids[:, -context_len:]
input_attn_mask = input_attn_mask[:, -context_len:]
#input_ids = input_ids[:, -context_len:]
#input_attn_mask = input_attn_mask[:, -context_len:]
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
eos_token_id=tokenizer.eos_token_id, #tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id,
#stopping_criteria=StoppingCriteriaList([StopOnTokens()]) # added
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# print("preds")
# print(preds)
# print(len(preds))
if num_responses > 1:
outputs = model.generate(
input_ids,
max_new_tokens=response_len,
num_beams=num_responses-1,
num_return_sequences=num_responses-1,
eos_token_id=tokenizer.eos_token_id, #tokenizer.encode(REP_END)[0],
use_cache=True,
attention_mask=input_attn_mask,
pad_token_id=tokenizer.eos_token_id,
#stopping_criteria=StoppingCriteriaList([StopOnTokens()]) # added
)
output_ids = outputs[:, input_ids.shape[-1]:]
#preds.extend(tokenizer.batch_decode(output_ids, skip_special_tokens=True))
add_preds =tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# print("add_preds")
# print(add_preds)
# print(len(add_preds))
#preds.extend(add_preds)
new_preds = []
count = 0
for chnk in chunk(add_preds, size=num_responses-1):
new_preds += [ preds[count]]
new_preds += list(chnk)
count += 1
preds = new_preds
#print(preds)
# preds = [p.replace(REP_END, "") for p in preds]
# Note: post processing because with batch stopping criteria trickier just gen
preds = [ pred.split("\n")[0] for pred in preds]
#print(preds)
# TODO: when use_special_tokens, need to cut by RESPONSE_END or WORKFLOW_END
if scorer is True:
response_score_list = []
for pred in preds:
response_ids = tokenizer(pred, return_tensors="pt").input_ids.to(device)
context_response_ids = torch.cat((input_ids, response_ids), dim=1)
logits = model(context_response_ids).logits
response_logits = logits[0, input_ids.shape[-1]-1:-1, :]
response_scores = torch.index_select(response_logits, dim=1, index=response_ids.flatten()) # response_len x response_len
response_scores = torch.diagonal(response_scores) # response_len x 1
score = torch.sum(response_scores).item()
row_dict = {'score': score, 'response': pred}
response_score_list.append(row_dict)
response_score_df = pd.DataFrame(response_score_list)
response_score_df = response_score_df.sort_values(by = 'score', ascending=False)
preds = response_score_df['response'].to_list()
return preds
def generate_ilql(context, model, tokenizer, num_responses, context_len, response_len):
prompt = context.replace("> ", ">").replace(" <", "<")
prompt = prompt + f"{REP_START}"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
input_attn_mask = inputs.attention_mask.to(device)
input_ids = input_ids[:, -context_len:]
input_attn_mask = input_attn_mask[:, -context_len:]
outputs = model.generate(
input_ids=input_ids,
attention_mask=input_attn_mask,
beta=0.,
temperature=1e-6,
max_length=context_len+response_len,
eos_token_id=tokenizer.encode(REP_END)[0],
pad_token_id=tokenizer.eos_token_id
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
# preds = [p.replace(REP_END, "") for p in preds]
return preds
def generate_ilql_scorer(context, model, tokenizer, num_responses, context_len, response_len):
prompt = context.replace("> ", ">").replace(" <", "<")
prompt = prompt + f"{REP_START}"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
input_attn_mask = inputs.attention_mask.to(device)
input_ids = input_ids[:, -context_len:]
input_attn_mask = input_attn_mask[:, -context_len:]
response_score_list = []
for k in range(num_responses):
outputs = model.generate(
input_ids=input_ids,
attention_mask=input_attn_mask,
beta=1.,
temperature=1,
max_length=context_len+response_len,
eos_token_id=tokenizer.encode(REP_END)[0],
pad_token_id=tokenizer.eos_token_id
)
output_ids = outputs[:, input_ids.shape[-1]:]
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
context_w_repstart = tokenizer.batch_decode(input_ids, skip_special_tokens=False)[0]
context_response = [f"{context_w_repstart}{SPLIT_TOKEN}{preds}{REP_END}"]
context_response_ids, context_response_mask, actions_ixs, states_ixs = prepare_model_input(tokenizer, samples=context_response, split_token=SPLIT_TOKEN, device=device)
_, _, _, vs, _ = model(input_ids=context_response_ids, attention_mask=context_response_mask, actions_ixs=actions_ixs, states_ixs=states_ixs)
V = vs[:, :-1].view(-1) # vs: 1 x K x 1
V_terminal = V[-1].item()
row_dict = {'score': V_terminal, 'response': preds}
response_score_list.append(row_dict)
# preds = [p.replace(REP_END, "") for p in preds]
response_score_df = pd.DataFrame(response_score_list)
response_score_df = response_score_df.sort_values(by = 'score', ascending=False)
return response_score_df['response'].to_list()
def generate_ilql_scorer_on_tf(context, model, model_tf, tokenizer, tokenizer_tf, num_responses, context_len, response_len):
preds_tf = generate_dt(context=context, model=model_tf, tokenizer=tokenizer_tf, num_responses=num_responses, context_len=context_len, response_len=response_len)
prompt = context.replace("> ", ">").replace(" <", "<")
prompt = prompt + f"{REP_START}"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
input_ids = input_ids[:, -context_len:]
response_score_list = []
for pred in preds_tf:
context_w_repstart = tokenizer.batch_decode(input_ids, skip_special_tokens=False)[0]
context_response = [f"{context_w_repstart}{SPLIT_TOKEN}{pred}{REP_END}"]
context_response_ids, context_response_mask, actions_ixs, states_ixs = prepare_model_input(tokenizer, samples=context_response, split_token=SPLIT_TOKEN, device=device)
logits, _, _, vs, _ = model(input_ids=context_response_ids, attention_mask=context_response_mask, actions_ixs=actions_ixs, states_ixs=states_ixs)
V = vs[:, :-1].view(-1) # vs: 1 x K x 1
V_terminal = V[-1].item()
# logits_input = torch.diag(logits.index_select(dim=2, index=context_response_ids[0, :])[0, :])
# logits_response = logits_input[-vs.shape[1]:]
# logits_score = torch.sum(logits_response)
row_dict = {'score': V_terminal, 'response': pred}
response_score_list.append(row_dict)
response_score_df = pd.DataFrame(response_score_list)
response_score_df = response_score_df.sort_values(by = 'score', ascending=False)
return response_score_df['response'].to_list()
def evaluate_model(
method: str = "tf",
scorer: bool = False,
dataset: str = "workflow-response",
metrics: List[str] = ["bert_score", "bleurt_score", "meteor", "bleu"],
data_path: str = "data/b1.json",
split: str = 'test',
model_path: str = None,
config_path: str = None,
num_samples: int = 1000,
num_responses: int = 1,
context_len: int = 96,
response_len: int = 32,
bert_thresh: float = 0.6,
save_path: Optional[str] = None,
do_batch: bool = True,
batch_size: int = 16,
cascade_datapath: str = "./test_results/wf_prediction_epochs4/evaluation_tf.csv", #"./test_results/wf_prediction/evaluation_tf.csv",
use_special_tokens: bool = False
):
#print("path:", path)
for path in [data_path, model_path, config_path, save_path]:
if path is None: continue
if not os.path.isabs(path): path = path #f"{BASE_PATH}/{path}"
with open(data_path, 'r') as f:
data = json.load(f)
# print(dataset)
# print("="*30)
with Pool() as p:
if dataset == "abcd":
for path in [data_path, save_path, model_path]:
if path is None: continue
if not os.path.isabs(path): path = f"{BASE_PATH}/{path}"
with open(data_path, 'r') as f:
data = json.load(f)
data_split = "dev" if (split == "val") else split
context_response_pairs_list = list(tqdm(p.imap(convo_to_context_response_pairs_abcd, [row['original'] for row in data[data_split]]), total=len(data[data_split])))
elif dataset == "multi_woz":
data = load_dataset("multi_woz_v22")
data_split = "validation" if (split == "val") else split
context_response_pairs_list = list(tqdm(p.imap(convo_to_context_response_pairs_multi_woz, data[data_split]), total=len(data[data_split])))
elif dataset == "taskmaster3":
data = load_dataset("taskmaster3")['train'] # all data are in the 'train' split
# split by 80%, 10%, 10%
indices = np.random.RandomState(42).permutation(len(data)).tolist()
indices = {
'train': indices[:int(len(data) * 0.8)],
'val': indices[int(len(data) * 0.8):int(len(data) * 0.9)],
'test': indices[int(len(data) * 0.9):],
}
data = {k: [data[i] for i in indices[k]] for k in indices}
context_response_pairs_list = list(tqdm(p.imap(convo_to_context_response_pairs_taskmaster3, data[split]), total=len(data[split])))
elif dataset == "workflow-response":
data_split = "dev" if (split == "val") else split
#print(data[data_split])
func = partial(convo_to_context_response_pairs_workflow_response, use_special_tokens=use_special_tokens)
context_response_pairs_list = list(tqdm(p.imap(func, data[data_split]), total=len(data[data_split])))
elif dataset == "wf-cascade1":
"""
This should be called first, then after this wf-cascade2
This prepares the data with necessary gt response for the cascade2 utt prediction model
"""
with open("data/utt_prediction.json", 'r') as f:
data = json.load(f)
data_split = "dev" if (split == "val") else split
#print(data[data_split])
func = partial(convo_to_context_response_pairs_workflow_response, use_special_tokens=use_special_tokens)
context_response_pairs_list = list(tqdm(p.imap(func, data[data_split]), total=len(data[data_split])))
context_response_pairs = pd.concat(context_response_pairs_list)
new = []
for idx, pair in context_response_pairs.iterrows():
context = pair["context"]
response = pair["response"]
if "wf-action: " not in context:
print("error!")
exit()
new_response = context.split("wf-action: ")[-1].strip()[:-len("system:")].strip()
new_context = context.split("wf-action: ")[0].strip().strip("\n")+"\nwf-action: "
#context = sample["input"]+"\nsystem: "
#utterance = sample["target"][len("system: "):].strip()#.strip("system:").strip()
dic = {
"context": new_context,
"response": new_response,
"cont_response": response
}
new.append(dic)
#print(dic) #
context_response_pairs = pd.DataFrame(new)
elif dataset == "wf-cascade2":
pairs = []
import csv
with open(cascade_datapath, 'r') as data:
for line in csv.DictReader(data):
context = line["context"]+line["response_1"].strip()+"\nsystem: "
response = line["cont_response"]
true_wf = line["true_response"]
dic = { "context": context, "response": response, "true_wf": true_wf }
#print(dic) #
pairs += [dic]
context_response_pairs = pd.DataFrame(pairs)
else:
raise NotImplementedError(f"{dataset=}")
if dataset != "wf-cascade1" and dataset != "wf-cascade2":
context_response_pairs = pd.concat(context_response_pairs_list)
if False:
import random
rint = random.randint(0, len(context_response_pairs_list)-1)
print(context_response_pairs_list[rint])
exit()
if num_samples is not None and dataset != "wf-cascade2":
# wf-cascade2 is excluded because it operates on output of wf-cascade1
set_seed(42)
context_response_pairs = context_response_pairs.sample(n=num_samples, random_state=1)
print("loading model")
if (method == 'tf'):
model, tokenizer = load_tf(model_path)
if not do_batch:
def generate_fn(context): return generate_tf(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
else:
def generate_fn(context): return generate_tf_batch(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
elif (method == 'tf_top'):
model, tokenizer = load_tf(model_path)
def generate_fn(context): return generate_tf(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
elif (method == 'tf_all'):
model, tokenizer = load_tf(model_path)
def generate_fn(context): return generate_tf(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
elif (method == 'dt'):
model, tokenizer = load_tf(model_path)
def generate_fn(context): return generate_dt(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
elif (method == 'ilql'):
model, tokenizer = load_ilql(config_path)
def generate_fn(context): return generate_ilql(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len)
elif (method == 'ilql_scorer'):
model_tf, tokenizer_tf = load_tf(model_path)
model, tokenizer = load_ilql(config_path)
def generate_fn(context): return generate_ilql_scorer_on_tf(
context=context, model=model, model_tf=model_tf, tokenizer=tokenizer, tokenizer_tf=tokenizer_tf, num_responses=num_responses, context_len=context_len, response_len=response_len)
elif (method == 'tf_batch'):
model, tokenizer = load_tf(model_path)
def generate_fn(context): return generate_tf_batch(
context=context, model=model, tokenizer=tokenizer, num_responses=num_responses, context_len=context_len, response_len=response_len, scorer=scorer)
else:
print(f"method {method} not found")
return
num_param = sum([p.numel() for p in model.parameters()])
print(f"# of param: {num_param / 10**6:.2f} M")
all_pred_responses = []
all_gold_responses = []
if not do_batch:
for idx, row in tqdm(context_response_pairs.iterrows(), total=context_response_pairs.shape[0]):
preds = generate_fn(context=row['context'])
all_gold_responses.append(row['response'])
all_pred_responses.append(preds)
else:
# pre walk
cr = []
for idx, row in tqdm(context_response_pairs.iterrows(), total=context_response_pairs.shape[0]):
context = row["context"]
response = row["response"]
cr += [ {"context": context, "response": response}]
for idx, row in tqdm(enumerate(chunk(cr, size=batch_size)), total=len(cr)//batch_size + 1):
#print(idx)
#print(len(row))
contexts = [ x["context"] for x in row]
responses = [ x["response"] for x in row ]
preds = generate_fn(context=contexts)
all_gold_responses.extend(responses)
all_pred_responses.extend(preds)
all_pred_responses = list(chunk(all_pred_responses, size=num_responses))
#preds_flat = all_pred_responses #[p for pred_responses in all_pred_responses for p in pred_responses]
#gold_flat = [gold_response for gold_response in all_gold_responses for i in range(num_responses)]
preds_flat = [p for pred_responses in all_pred_responses for p in pred_responses]
gold_flat = [gold_response for gold_response in all_gold_responses for i in range(num_responses)]
if use_special_tokens:
p,g = [], []
for pp,gg in zip(preds_flat, gold_flat):
pp = pp.replace(WORKFLOW_END,"").strip()
pp = pp.replace(SYSTEM_END,"").strip()
gg = gg.replace(WORKFLOW_END,"").strip()
gg = gg.replace(SYSTEM_END,"").strip()
p.append(pp)
g.append(gg)
pred_flat, gold_flat = p, g
# print(all_pred_responses)
# print("="*30)
# for g, p in zip(gold_flat, preds_flat):
# print("-"*30)
# print(g)
# print(p)
# This is not the way to handle it ==> must handle it in bleu computation
# p, g = [], []
# for pred, gold in zip(preds_flat, gold_flat):
# if pred.strip() == "" or gold.strip() == "":
# pass
# else:
# p.append(pred)
# g.append(gold)
# preds_flat, gold_flat = p, g
all_metric_values: Dict[str, List] = {} # metric -> metric_values (list of lists, n_examples x n_responses)
for metric in metrics:
print(metric)
if metric == 'bert_score':
print("loading bert scorer")
scorer = BERTScorer(lang="en", rescale_with_baseline=True)
P, R, F1 = scorer.score(preds_flat, gold_flat)
bert_f1_flat = F1.tolist() # list of (n_examples * n_responses) elements
bert_f1_values = [bert_f1_flat[i:i+num_responses] for i in range(0, len(bert_f1_flat), num_responses)]
all_metric_values[metric] = bert_f1_values
elif (metric == 'bleurt_score'):
print("loading bleurt scorer")
bleurt = evaluate.load("bleurt", module_type="metric")#evaluate.load("bleurt", "BLEURT-20")
bleurt_flat = bleurt.compute(predictions=preds_flat, references=gold_flat)['scores']
bleurt_values = [bleurt_flat[i:i+num_responses] for i in range(0, len(bleurt_flat), num_responses)]
all_metric_values[metric] = bleurt_values
elif (metric == 'perplexity'):
perplexity = evaluate.load("perplexity", module_type="metric")
perplexity_flat = perplexity.compute(predictions=preds_flat, model_id='gpt2')['perplexities']
perplexity_values = [perplexity_flat[i:i+num_responses] for i in range(0, len(perplexity_flat), num_responses)]
all_metric_values[metric] = perplexity_values
elif (metric == 'exact_match'):
em = [1.0 if p.strip()== g.strip() else 0.0 for p,g in zip(preds_flat, gold_flat)]
em = [em[i:i+num_responses] for i in range(0, len(em), num_responses)]
all_metric_values[metric] = em
else: # "meteor", "bleu"
evaluate_metric = evaluate.load(metric)
metric_values_flat = []
for pred, gold in zip(preds_flat, gold_flat):
#pred = "\n"
results = evaluate_metric.compute(predictions=[pred], references=[gold])[metric] if pred.strip() != "" else 0.
metric_values_flat.append(results)
metric_values = [metric_values_flat[i:i+num_responses] for i in range(0, len(metric_values_flat), num_responses)]
all_metric_values[metric] = metric_values
evaluation_data = []
for cidx, (_, row) in enumerate(context_response_pairs.iterrows()):
#print(row)
row_dict = {}
row_dict['context'] = row['context']
row_dict['true_response'] = row['response']
if "cont_response" in row:
row_dict["cont_response"] = row["cont_response"]
if "true_wf" in row:
row_dict["true_wf"] = row["true_wf"]
for ridx in range(0, num_responses):
#print(cidx, ridx, len(all_pred_responses), len(all_pred_responses[cidx]))
#print(all_pred_responses[cidx])
row_dict[f'response_{ridx+1}'] = all_pred_responses[cidx][ridx]
for metric in metrics:
row_dict[f'{metric}_{ridx+1}'] = all_metric_values[metric][cidx][ridx]
evaluation_data.append(row_dict)
# Create eval dataframe
evaluation_df = pd.DataFrame(evaluation_data)
# Compute topk over num_responses
print("=" * 80)
for topk in range(1, num_responses+1):
print(f"{method}, top {topk}:")
for metric in metrics:
metric_column_list = [f'{metric}_{ridx+1}' for ridx in range(0, topk)]
metric_topk = evaluation_df[metric_column_list].max(axis=1)
print(f'{metric}: {metric_topk.mean()}')
if metric=='bert_score':
print(f'bert_click: {(metric_topk > bert_thresh).mean()}')
print("=" * 80)
# Save to csv
if save_path is not None:
os.makedirs(save_path, exist_ok=True)
evaluation_df.to_csv(f"{save_path}/evaluation_{method}.csv")
print(f"Saved evaluation results to {save_path}/evaluation_{method}.csv")
if __name__ == "__main__":
fire.Fire(evaluate_model)