-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrefresh_api.py
326 lines (258 loc) · 12.1 KB
/
refresh_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Import packages
import brawlstats
import pandas as pd
import datetime as dt
import api_key as key
import concurrent.futures as cf
from tqdm import tqdm
# crear cliente
client = brawlstats.Client(key.api_key, base_url='https://proxy.brawlstars.com/v{}')
# importar brawlers
json_brawlers = client.get_brawlers().raw_data
brawlers = pd.json_normalize(json_brawlers)[['id', 'name']]
# reset brawler index y export de dataset
brawlers.to_parquet('datasets/brawlers/brawlers.parquet', index=False, engine='fastparquet', compression='gzip')
# import información adicional de brawlers
brawlers_classification = pd.read_csv('datasets/brawlers/brawlers_classification.csv', index_col=0)
# merge de ambos dataframes
brawlerStats = pd.merge(brawlers, brawlers_classification, on='id')
# export dataframe final brawlers
brawlerStats.to_parquet('datasets/brawlers/brawlers_stats.parquet', index=False, engine='fastparquet', compression='gzip')
print('dimensiones brawlerStats: ' + str(brawlerStats.shape))
countryCode = ['US','MX','BR','GB','CA','DE','FR','ES','IT','RU','TR','AR','PL','CO','IN','ID','UA','AU','NL','JP','KR','CZ','CH','PH','MY','VN','IE','TH','IL','NO','FI','PT','AT','GR','HU','SG','SA','AE','SE','DK','BZ','CR','GT','HN','NI','PA','SV','BO','CL','EC']
# sacar el player tag de los top players
top_player = []
# top global
leaderboard = client.get_rankings(ranking='players')
for i in leaderboard:
top_player.append({'tag': i.tag, 'trophies': i.trophies, 'rank_type': 'global'})
# top por regiones en countryCode
for i, item in enumerate(countryCode):
leaderboard = client.get_rankings(ranking='players',region=item)
for k in leaderboard:
top_player.append({'tag': k.tag, 'trophies': k.trophies, 'rank_type': item})
top_player = pd.DataFrame(top_player).drop_duplicates(subset='tag', keep='first').reset_index(drop=True)
print('cantidad top player tag: ' + str(len(top_player)))
# exportar dataset en parquet
top_player.to_parquet('datasets/players/top_player.parquet', index=False, engine='fastparquet', compression='gzip')
# sacar el club de los top clubs
top_club = []
# top global
leaderboard = client.get_rankings(ranking='clubs')
for i in leaderboard:
top_club.append({'tag': i.tag, 'trophies': i.trophies, 'rank_type': 'global'})
# top por regiones en countryCode
for i, item in enumerate(countryCode):
leaderboard = client.get_rankings(ranking='players',region=item)
for k in leaderboard:
top_club.append({'tag': k.tag, 'trophies': k.trophies, 'rank_type': 'region'})
top_club = pd.DataFrame(top_club).drop_duplicates(subset='tag', keep='first').reset_index(drop=True)
print('cantidad top club tag: ' + str(len(top_club)))
# exportar dataset en parquet
top_club.to_parquet('datasets/clubs/top_club.parquet', index=False, engine='fastparquet', compression='gzip')
# importar battlelog usando concurrent.futures
def process_player(i, playertag):
json_battlelog = {}
try:
json_battlelog = client.get_battle_logs(playertag).raw_data
except:
print("No se pudo recuperar battlelog de tag " + playertag)
player_data = {}
for k in range(len(json_battlelog)):
loaded_json = json_battlelog[k]
loaded_json['playertag'] = playertag
player_data[str(i) + '-' + str(k)] = loaded_json
return player_data
data = {}
top_player_list = top_player['tag'].to_list()
print(f'Inicio de proceso de recuperación de battlelog de {len(top_player_list)} jugadores')
with cf.ThreadPoolExecutor(max_workers=40) as executor:
futures = [executor.submit(process_player, i, playertag) for i, playertag in enumerate(top_player_list)]
for future in tqdm(cf.as_completed(futures), total=len(top_player_list)):
player_data = future.result()
data.update(player_data)
battlelog = pd.DataFrame.from_dict(data, orient='index').reset_index(drop=True)
battlelog = pd.merge(left=battlelog, right=pd.json_normalize(battlelog['event'].tolist()).add_prefix('event.'), left_index=True, right_index=True)
battlelog = pd.merge(left=battlelog, right=pd.json_normalize(battlelog['battle'].tolist()).add_prefix('battle.'), left_index=True, right_index=True)
battlelog = battlelog.drop('event', axis=1)
battlelog = battlelog.drop('battle', axis=1)
print('dimensiones battlelog: ' + str(battlelog.shape))
print(f'Se eliminan {len(battlelog.loc[battlelog["battle.type"] == "friendly"])} eventos de tipo friendly')
battlelog = battlelog.loc[battlelog['battle.type'] != "friendly"]
modos_alt = ['bossFight','roboRumble','bigGame','soloShowdown','duoShowdown', 'duels']
print(f'Se eliminan {len(battlelog.loc[battlelog["battle.mode"].isin(modos_alt)])} eventos de modos alternativos')
battlelog = battlelog.loc[~battlelog['battle.mode'].isin(modos_alt)]
battlelog['event.mode'] = battlelog['event.mode'].fillna('unknown')
print(f'Se eliminan {len(battlelog.loc[battlelog["event.mode"] == "unknown"])} eventos sin modo de juego')
battlelog = battlelog.loc[battlelog['event.mode'] != "unknown"]
battlelog['event.map'] = battlelog['event.map'].fillna('unknown')
print(f'Se eliminan {len(battlelog.loc[battlelog["event.map"] == "unknown"])} eventos sin mapa')
battlelog = battlelog.loc[battlelog['event.map'] != "unknown"]
# reset battlelog index
battlelog = battlelog.reset_index(drop=True)
def normalize_to_df(i, t, p):
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.tag'] = normalized[t - 1][p - 1]['tag']
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.name'] = normalized[t - 1][p - 1]['name']
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.brawler.id'] = normalized[t - 1][p - 1]['brawler.id']
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.brawler.name'] = normalized[t - 1][p - 1]['brawler.name']
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.brawler.power'] = normalized[t - 1][p - 1]['brawler.power']
battlelog.loc[i,'battle.team' + str(t) + '.player' + str(p) + '.brawler.trophies'] = normalized[t - 1][p - 1]['brawler.trophies']
normalized = pd.DataFrame()
print(f'Inicio de proceso de normalización de battlelog')
for i, team in tqdm(enumerate(battlelog['battle.teams']), total=len(battlelog['battle.teams'])):
if team != None:
try:
normalized = pd.json_normalize(team, errors='ignore').transpose()
normalize_to_df(i, 1, 1)
normalize_to_df(i, 1, 2)
normalize_to_df(i, 1, 3)
normalize_to_df(i, 2, 1)
normalize_to_df(i, 2, 2)
normalize_to_df(i, 2, 3)
except:
print("no se pudo transponer")
# fix column names
battlelog.columns = battlelog.columns.str.replace('.', '_', regex=True)
# select columns
battlelog = battlelog[[
'battleTime'
,'playertag'
,'event_mode'
,'event_map'
,'battle_type'
,'battle_result'
,'battle_duration'
,'battle_trophyChange'
,'battle_team1_player1_tag'
,'battle_team1_player1_name'
,'battle_team1_player1_brawler_id'
,'battle_team1_player1_brawler_name'
,'battle_team1_player1_brawler_power'
,'battle_team1_player1_brawler_trophies'
,'battle_team1_player2_tag'
,'battle_team1_player2_name'
,'battle_team1_player2_brawler_id'
,'battle_team1_player2_brawler_name'
,'battle_team1_player2_brawler_power'
,'battle_team1_player2_brawler_trophies'
,'battle_team1_player3_tag'
,'battle_team1_player3_name'
,'battle_team1_player3_brawler_id'
,'battle_team1_player3_brawler_name'
,'battle_team1_player3_brawler_power'
,'battle_team1_player3_brawler_trophies'
,'battle_team2_player1_tag'
,'battle_team2_player1_name'
,'battle_team2_player1_brawler_id'
,'battle_team2_player1_brawler_name'
,'battle_team2_player1_brawler_power'
,'battle_team2_player1_brawler_trophies'
,'battle_team2_player2_tag'
,'battle_team2_player2_name'
,'battle_team2_player2_brawler_id'
,'battle_team2_player2_brawler_name'
,'battle_team2_player2_brawler_power'
,'battle_team2_player2_brawler_trophies'
,'battle_team2_player3_tag'
,'battle_team2_player3_name'
,'battle_team2_player3_brawler_id'
,'battle_team2_player3_brawler_name'
,'battle_team2_player3_brawler_power'
,'battle_team2_player3_brawler_trophies'
]]
dtypes = {
'battleTime': 'datetime64[ns]',
'battle_duration': 'Int16',
'battle_trophyChange': 'Int8',
'battle_team1_player1_brawler_id': 'Int32',
'battle_team1_player1_brawler_power': 'Int8',
'battle_team1_player1_brawler_trophies': 'Int16',
'battle_team1_player2_brawler_id': 'Int32',
'battle_team1_player2_brawler_power': 'Int8',
'battle_team1_player2_brawler_trophies': 'Int16',
'battle_team1_player3_brawler_id': 'Int32',
'battle_team1_player3_brawler_power': 'Int8',
'battle_team1_player3_brawler_trophies': 'Int16',
'battle_team2_player1_brawler_id': 'Int32',
'battle_team2_player1_brawler_power': 'Int8',
'battle_team2_player1_brawler_trophies': 'Int16',
'battle_team2_player2_brawler_id': 'Int32',
'battle_team2_player2_brawler_power': 'Int8',
'battle_team2_player2_brawler_trophies': 'Int16',
'battle_team2_player3_brawler_id': 'Int32',
'battle_team2_player3_brawler_power': 'Int8',
'battle_team2_player3_brawler_trophies': 'Int16',
'battle_team1_player1_brawler_name': 'category',
'battle_team1_player2_brawler_name': 'category',
'battle_team1_player3_brawler_name': 'category',
'battle_team2_player1_brawler_name': 'category',
'battle_team2_player2_brawler_name': 'category',
'battle_team2_player3_brawler_name': 'category',
'battle_result': 'category',
'event_mode': 'category',
'event_map': 'category',
'battle_type': 'category',
'battle_result': 'category',
}
battlelog = battlelog.astype(dtypes)
print(f'dimensiones battlelog: {battlelog.shape}')
try:
battlelog_hist = pd.read_parquet('datasets/teams/battlelog_teams.parquet')
except:
battlelog_hist = pd.DataFrame()
print('dimensiones battlelog hist: ' + str(battlelog_hist.shape))
# agregar nuevos reg a histórico
battlelog_final = pd.concat([battlelog, battlelog_hist])
print('dimensiones battlelog concat: ' + str(battlelog_final.shape))
# eliminar battelogs duplicados
battlelog_final = battlelog_final.drop_duplicates(['battleTime', 'event_mode', 'event_map', 'battle_type', 'battle_duration', 'battle_team1_player1_tag'], ignore_index=True)
print('dimensiones battlelog final sin duplicados: ' + str(battlelog_final.shape))
# export dataset teams completo mas histórico
battlelog_final.to_parquet('datasets/teams/battlelog_teams.parquet', index=False, engine='fastparquet', compression='gzip')
maplist = battlelog_final[['event_mode','event_map']].drop_duplicates()
maplist.to_parquet('datasets/maps/maplist.parquet', index=False, engine='fastparquet', compression='gzip')
# importar historico de players
players_hist = pd.read_parquet('datasets/players/players.parquet')
# players con menos de un mes desde su última actualización
players_lm = players_hist[players_hist['datetime'] > (dt.datetime.now() - dt.timedelta(days=30))]['tag'].to_list()
print(f'players con menos de un mes desde su última actualización: {len(players_lm)}')
battlelog_tags = pd.concat([
battlelog['battle_team1_player1_tag']
,battlelog['battle_team1_player2_tag']
,battlelog['battle_team1_player3_tag']
,battlelog['battle_team2_player1_tag']
,battlelog['battle_team2_player2_tag']
,battlelog['battle_team2_player3_tag']
]).drop_duplicates().reset_index(drop=True).to_list()
print(f'battlelog tags: {len(battlelog_tags)}')
# select tags not in players_hist
tags = list(set(battlelog_tags) - set(players_lm))
print(f'new tags: {len(tags)}')
# import players dataset
player = {}
def get_profile(playertag):
profile = client.get_profile(playertag)
return {
'tag': playertag,
'team_victories': profile.team_victories,
'highestTrophies': profile.highest_trophies,
'expPoints': profile.exp_points,
'trophies': profile.trophies,
'datetime': dt.datetime.now()
}
with cf.ThreadPoolExecutor(max_workers=50) as executor:
future_to_player = {executor.submit(get_profile, playertag): playertag for playertag in tags}
for future in tqdm(cf.as_completed(future_to_player), total = len(tags)):
try:
i = tags.index(future_to_player[future])
player[str(i)] = future.result()
except:
pass
players = pd.DataFrame.from_dict(player, orient='index').reset_index(drop=True)
# concatenar las bases
players = pd.concat([players_hist, players], ignore_index=True) \
.drop_duplicates(subset='tag', keep='last') \
.reset_index(drop=True)
print('dimensiones players: ' + str(players.shape))
# export players
players.to_parquet('datasets/players/players.parquet', index=False, engine='fastparquet', compression='gzip')