-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp02_fashion_mnist.py
516 lines (440 loc) · 19.6 KB
/
p02_fashion_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
from __future__ import print_function
import os
import argparse
import datetime
import six
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
from tqdm import tqdm
import numpy as np
from tensorboardX import SummaryWriter
import callbacks
# Training settings
parser = argparse.ArgumentParser(description='Deep Learning JHU Assignment 1 \
- Fashion-MNIST')
parser.add_argument('--batch-size', type=int, default=256, metavar='B',
help='input batch size for training (default: 64)')
parser.add_argument('--dropout-rate', type=float, default=50, metavar='DR',
help='Dropout rate (probability) (default: 50)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='TB',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='E',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--optimizer', type=str, default='sgd', metavar='O',
help='Optimizer options are sgd, p1sgd, adam, rms_prop')
parser.add_argument('--momentum', type=float, default=0.5, metavar='MO',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--no-train', action='store_true', default=False,
help='model only tests')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=100, metavar='I',
help="""how many batches to wait before logging detailed
training status, 0 means never log """)
parser.add_argument('--dataset', type=str, default='mnist', metavar='D',
help='Options are mnist and fashion_mnist')
parser.add_argument('--data_dir', type=str, default='../data/', metavar='F',
help='Where to put data')
parser.add_argument('--name', type=str, default='', metavar='N',
help="""A name for this training run, this
affects the directory so use underscores and not\
spaces.""")
parser.add_argument('--model', type=str, default='default', metavar='M',
help="""Options are default, P2Q7DefaultChannelsNet,
P2Q7HalfChannelsNet, P2Q7DoubleChannelsNet,
P2Q8BatchNormNet, P2Q9DropoutNet, P2Q10DropoutBatchnormNet,
P2Q11ExtraConvNet, P2Q12RemoveLayerNet, \
and P2Q13UltimateNet.""")
parser.add_argument('--print_log', action='store_true', default=False,
help='prints the csv log when training is complete')
parser.add_argument('--load_model', type=str, default='', metavar='N',
help="""A path to a serialized torch model""")
required = object()
args = None
def timeStamped(fname, fmt='%Y-%m-%d-%H-%M-%S_{fname}'):
""" Add a timestamp to your training run's name.
"""
# http://stackoverflow.com/a/5215012/99379
return datetime.datetime.now().strftime(fmt).format(fname=fname)
# choose the dataset
def prepareDatasetAndLogging(args):
# choose the dataset
if args.dataset == 'mnist':
DatasetClass = datasets.MNIST
elif args.dataset == 'fashion_mnist':
DatasetClass = datasets.FashionMNIST
else:
tail_string = ' try mnist or fashion_mnist'
raise ValueError('unknown dataset: ' + args.dataset + tail_string)
training_run_name = timeStamped(args.dataset + '_' + args.name)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
# Create the dataset, mnist or fasion_mnist
dataset_dir = os.path.join(args.data_dir, args.dataset)
training_run_dir = os.path.join(args.data_dir, training_run_name)
train_dataset = DatasetClass(
dataset_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_dataset = DatasetClass(
dataset_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs)
# Set up visualization and progress status update code
callback_params = {'epochs': args.epochs,
'samples': len(train_loader) * args.batch_size,
'steps': len(train_loader),
'metrics': {'acc': np.array([]),
'loss': np.array([]),
'val_acc': np.array([]),
'val_loss': np.array([])}}
if args.print_log:
output_on_train_end = os.sys.stdout
else:
output_on_train_end = None
callbacklist = callbacks.CallbackList(
[callbacks.BaseLogger(),
callbacks.TQDMCallback(),
callbacks.CSVLogger(filename=training_run_dir +
training_run_name + '.csv',
output_on_train_end=output_on_train_end)])
callbacklist.set_params(callback_params)
tensorboard_writer = SummaryWriter(log_dir=training_run_dir,
comment=args.dataset +
'_embedding_training')
# show some image examples in tensorboard projector with inverted color
images = 255 - test_dataset.test_data[:100].float()
label = test_dataset.test_labels[:100]
features = images.view(100, 784)
tensorboard_writer.add_embedding(features, metadata=label,
label_img=images.unsqueeze(1))
return tensorboard_writer, callbacklist, train_loader, test_loader
# Define the neural network classes
class Net(nn.Module):
def __init__(self, droprate=0.5):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.droprate = droprate
def forward(self, x):
# F is just a functional wrapper for modules from the nn package
# see http://pytorch.org/docs/_modules/torch/nn/functional.html
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.droprate, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q7HalfChannelsNet(nn.Module):
def __init__(self):
super(P2Q7HalfChannelsNet, self).__init__()
self.conv1 = nn.Conv2d(1, 5, kernel_size=5)
self.conv2 = nn.Conv2d(5, 10, kernel_size=5)
self.fc1 = nn.Linear(160, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 160)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q7DoubleChannelsNet(nn.Module):
def __init__(self):
super(P2Q7DoubleChannelsNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.conv2 = nn.Conv2d(20, 40, kernel_size=5)
self.fc1 = nn.Linear(640, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 640)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q8BatchNormNet(nn.Module):
def __init__(self):
super(P2Q8BatchNormNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.bn = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = self.bn(x)
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q9DropoutNet(nn.Module):
def __init__(self):
super(P2Q9DropoutNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.bn = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = self.bn(x)
x = F.dropout(x, training=self.training)
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q10DropoutBatchnormNet(nn.Module):
def __init__(self):
super(P2Q10DropoutBatchnormNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.bn = nn.BatchNorm2d(10)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.dropout(x, training=self.training)
x = self.bn(x)
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q11ExtraConvNet(nn.Module):
def __init__(self):
super(P2Q11ExtraConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, kernel_size=5)
self.bn = nn.BatchNorm2d(20)
self.conv2 = nn.Conv2d(20, 80, kernel_size=5)
self.conv3 = nn.Conv2d(80, 40, kernel_size=2)
self.fc1 = nn.Linear(40, 20)
self.fc2 = nn.Linear(20, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.dropout(x, training=self.training)
x = self.bn(x)
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = F.relu(F.max_pool2d(self.conv3(x), 2))
x = x.view(-1, 40)
x = F.relu(self.fc1(x))
x = x.view(-1, 20)
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class P2Q12RemoveLayerNet(nn.Module):
def __init__(self):
super(P2Q12RemoveLayerNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.dropout(x, training=self.training)
x = F.relu(self.fc1(x))
return F.log_softmax(x, dim=1)
class P2Q13UltimateNet(nn.Module):
def __init__(self):
super(P2Q13UltimateNet, self).__init__()
self.conv32_1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv32_2 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
self.bn32 = nn.BatchNorm2d(16)
self.conv128_1 = nn.Conv2d(16, 16, kernel_size=5, padding=2)
self.bn128 = nn.BatchNorm2d(16)
self.fc1 = nn.Linear(12544, 512)
self.bnfc1 = nn.BatchNorm2d(512)
self.fc2 = nn.Linear(512, 512)
self.bnfc2 = nn.BatchNorm2d(512)
self.fc3 = nn.Linear(512, 10)
def forward(self, x):
x = F.relu(self.conv32_1(x))
x = F.relu(self.conv32_2(x))
x = self.bn32(x)
x = F.dropout(x, training=self.training)
x = F.relu(self.conv128_1(x))
x = self.bn128(x)
x = F.dropout(x, training=self.training)
x = x.view(-1, 12544)
x = F.relu(self.fc1(x))
x = self.bnfc1(x)
x = F.dropout(x, training=self.training)
x = F.relu(self.fc2(x))
x = self.bnfc2(x)
x = F.dropout(x, training=self.training)
x = self.fc3(x)
return F.log_softmax(x, dim=1)
def chooseModel(model_name='default', droprate=0.5, cuda=True):
# TODO add all the other models here if their parameter is specified
if model_name == 'default' or model_name == 'P2Q7DefaultChannelsNet':
model = Net(droprate=droprate)
elif model_name in globals():
model = globals()[model_name]()
else:
raise ValueError('Unknown model type: ' + model_name)
if args.cuda:
model.cuda()
return model
def chooseOptimizer(model, optimizer='sgd'):
if optimizer == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum)
elif optimizer == 'adam':
optimizer = optim.Adam(model.parameters())
elif optimizer == 'rmsprop':
optimizer = optim.RMSprop(model.parameters())
else:
raise ValueError('Unsupported optimizer: ' + args.optimizer)
return optimizer
def train(model, optimizer, train_loader, tensorboard_writer, callbacklist,
epoch, tot_minb_c):
# Training
model.train()
correct_count = np.array(0)
for batch_idx, (data, target) in enumerate(train_loader):
callbacklist.on_batch_begin(batch_idx)
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
# Forward prediction step
output = model(data)
loss = F.nll_loss(output, target)
# Backpropagation step
loss.backward()
optimizer.step()
# The batch has ended, determine the
# accuracy of the predicted outputs
_, argmax = torch.max(output, 1)
# target labels and predictions are
# categorical values from 0 to 9.
accuracy = (target == argmax.squeeze()).float().mean()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
correct_count += pred.eq(target.data.view_as(pred)).cpu().sum()
batch_logs = {
'loss': np.array(loss.data[0]),
'acc': np.array(accuracy.data[0]),
'size': np.array(len(target))
}
batch_logs['batch'] = np.array(batch_idx)
callbacklist.on_batch_end(batch_idx, batch_logs)
if args.log_interval != 0 and tot_minb_c % args.log_interval == 0:
# put all the logs in tensorboard
for name, value in six.iteritems(batch_logs):
tensorboard_writer.add_scalar(name, value,
global_step=tot_minb_c)
# put all the parameters in tensorboard histograms
for name, param in model.named_parameters():
name = name.replace('.', '/')
tensorboard_writer.add_histogram(name,
param.data.cpu().numpy(),
global_step=tot_minb_c)
tensorboard_writer.add_histogram(name + '/gradient',
param.grad.data.cpu().numpy(),
global_step=tot_minb_c)
tot_minb_c += 1
# display the last batch of images in tensorboard
img = torchvision.utils.make_grid(255 - data.data, normalize=True,
scale_each=True)
tensorboard_writer.add_image('images', img,
global_step=tot_minb_c)
return tot_minb_c
def test(model, test_loader, tensorboard_writer, callbacklist, epoch,
total_minibatch_count):
# Validation Testing
model.eval()
test_loss = 0
correct = 0
progress_bar = tqdm(test_loader, desc='Validation')
for data, target in progress_bar:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data[0]
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_size = np.array(len(test_loader.dataset), np.float32)
test_loss /= test_size
acc = np.array(correct, np.float32) / test_size
epoch_logs = {'val_loss': np.array(test_loss),
'val_acc': np.array(acc)}
for name, value in six.iteritems(epoch_logs):
tensorboard_writer.add_scalar(name, value,
global_step=total_minibatch_count)
callbacklist.on_epoch_end(epoch, epoch_logs)
progress_bar.write(
'Epoch: {} - validation test results - Average val_loss: {:.4f}, \
val_acc: {}/{} ({:.2f}%)'.format(
epoch, test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return acc
def run_experiment(args):
total_minibatch_count = 0
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
epochs_to_run = args.epochs
tensorboard_writer, callbacklist, train_loader, test_loader \
= prepareDatasetAndLogging(args)
model = chooseModel(args.model)
if args.load_model != "":
print("LOADING MODEL: " + args.load_model)
model.load_state_dict(torch.load(args.load_model))
# tensorboard_writer.add_graph(model, images[:2])
optimizer = chooseOptimizer(model, args.optimizer)
# Run the primary training loop, starting with validation accuracy of 0
val_acc = 0
callbacklist.on_train_begin()
for epoch in range(1, epochs_to_run + 1):
callbacklist.on_epoch_begin(epoch)
# train for 1 epoch
if not args.no_train:
total_minibatch_count = train(model, optimizer, train_loader,
tensorboard_writer,
callbacklist, epoch,
total_minibatch_count)
# validate progress on test dataset
val_acc = test(model, test_loader, tensorboard_writer,
callbacklist, epoch, total_minibatch_count)
callbacklist.on_train_end()
tensorboard_writer.close()
if args.model == "P2Q13UltimateNet":
torch.save(model.state_dict(), './q13_save.model' + args.name)
if args.dataset == 'fashion_mnist' and val_acc > 0.92 and val_acc <= 1.0:
print("Congratulations, you beat the Question 13 minimum of 92 with \
({:.2f}%) validation accuracy!".format(val_acc))
if __name__ == '__main__':
args = parser.parse_args()
# Run the primary training and validation loop
run_experiment(args)