|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +""" |
| 3 | +Created on Sun Sep 20 16:24:38 2020 |
| 4 | + |
| 5 | +@author: iball |
| 6 | +""" |
| 7 | + |
| 8 | +print('imports start') |
| 9 | + |
| 10 | +import matplotlib |
| 11 | +import matplotlib.pyplot as plt |
| 12 | +import numpy as np |
| 13 | +from tqdm import trange |
| 14 | + |
| 15 | +matplotlib.use('Agg') |
| 16 | + |
| 17 | +print('imports done') |
| 18 | + |
| 19 | +class Bandit: |
| 20 | + # @k_arm: # of arms |
| 21 | + # @epsilon: probability for exploration in epsilon-greedy algorithm |
| 22 | + # @initial: initial estimation for each action |
| 23 | + # @step_size: constant step size for updating estimations |
| 24 | + # @sample_averages: if True, use sample averages to update estimations instead of constant step size |
| 25 | + # @UCB_param: if not None, use UCB algorithm to select action |
| 26 | + # @gradient: if True, use gradient based bandit algorithm |
| 27 | + # @gradient_baseline: if True, use average reward as baseline for gradient based bandit algorithm |
| 28 | + def __init__(self, k_arm=10, epsilon=0., initial=0., step_size=0.1, sample_averages=False, UCB_param=None, |
| 29 | + gradient=False, gradient_baseline=False, true_reward=0.): |
| 30 | + self.k = k_arm |
| 31 | + self.step_size = step_size |
| 32 | + self.sample_averages = sample_averages |
| 33 | + self.indices = np.arange(self.k) |
| 34 | + self.time = 0 |
| 35 | + self.UCB_param = UCB_param |
| 36 | + self.gradient = gradient |
| 37 | + self.gradient_baseline = gradient_baseline |
| 38 | + self.average_reward = 0 |
| 39 | + self.true_reward = true_reward |
| 40 | + self.epsilon = epsilon |
| 41 | + self.initial = initial |
| 42 | + |
| 43 | + def reset(self): |
| 44 | + # real reward for each action |
| 45 | + self.q_true = np.random.randn(self.k) + self.true_reward |
| 46 | + |
| 47 | + # estimation for each action |
| 48 | + self.q_estimation = np.zeros(self.k) + self.initial |
| 49 | + |
| 50 | + # # of chosen times for each action |
| 51 | + self.action_count = np.zeros(self.k) |
| 52 | + |
| 53 | + self.best_action = np.argmax(self.q_true) |
| 54 | + |
| 55 | + self.time = 0 |
| 56 | + |
| 57 | + # get an action for this bandit |
| 58 | + def act(self): |
| 59 | + if np.random.rand() < self.epsilon: |
| 60 | + return np.random.choice(self.indices) |
| 61 | + |
| 62 | + if self.UCB_param is not None: |
| 63 | + UCB_estimation = self.q_estimation + \ |
| 64 | + self.UCB_param * np.sqrt(np.log(self.time + 1) / (self.action_count + 1e-5)) |
| 65 | + q_best = np.max(UCB_estimation) |
| 66 | + return np.random.choice(np.where(UCB_estimation == q_best)[0]) |
| 67 | + |
| 68 | + if self.gradient: |
| 69 | + exp_est = np.exp(self.q_estimation) |
| 70 | + self.action_prob = exp_est / np.sum(exp_est) |
| 71 | + return np.random.choice(self.indices, p=self.action_prob) |
| 72 | + |
| 73 | + q_best = np.max(self.q_estimation) |
| 74 | + return np.random.choice(np.where(self.q_estimation == q_best)[0]) |
| 75 | + |
| 76 | + # take an action, update estimation for this action |
| 77 | + def step(self, action): |
| 78 | + # generate the reward under N(real reward, 1) |
| 79 | + reward = np.random.randn() + self.q_true[action] |
| 80 | + self.time += 1 |
| 81 | + self.action_count[action] += 1 |
| 82 | + self.average_reward += (reward - self.average_reward) / self.time |
| 83 | + |
| 84 | + if self.sample_averages: |
| 85 | + # update estimation using sample averages |
| 86 | + self.q_estimation[action] += (reward - self.q_estimation[action]) / self.action_count[action] |
| 87 | + elif self.gradient: |
| 88 | + one_hot = np.zeros(self.k) |
| 89 | + one_hot[action] = 1 |
| 90 | + if self.gradient_baseline: |
| 91 | + baseline = self.average_reward |
| 92 | + else: |
| 93 | + baseline = 0 |
| 94 | + self.q_estimation += self.step_size * (reward - baseline) * (one_hot - self.action_prob) |
| 95 | + else: |
| 96 | + # update estimation with constant step size |
| 97 | + self.q_estimation[action] += self.step_size * (reward - self.q_estimation[action]) |
| 98 | + return reward |
| 99 | + |
| 100 | +print('Done') |
| 101 | + |
| 102 | +def simulate(runs, time, bandits): |
| 103 | + print('here 1') |
| 104 | + rewards = np.zeros((len(bandits), runs, time)) |
| 105 | + best_action_counts = np.zeros(rewards.shape) |
| 106 | + print('here 2') |
| 107 | + for i, bandit in enumerate(bandits): |
| 108 | + for r in trange(runs): |
| 109 | + bandit.reset() |
| 110 | + for t in range(time): |
| 111 | + action = bandit.act() |
| 112 | + reward = bandit.step(action) |
| 113 | + rewards[i, r, t] = reward |
| 114 | + if action == bandit.best_action: |
| 115 | + best_action_counts[i, r, t] = 1 |
| 116 | + mean_best_action_counts = best_action_counts.mean(axis=1) |
| 117 | + mean_rewards = rewards.mean(axis=1) |
| 118 | + print('here 3') |
| 119 | + print('mean_best_action_counts, mean_rewards ='+mean_best_action_counts+ mean_rewards) |
| 120 | + return mean_best_action_counts, mean_rewards |
| 121 | + |
| 122 | + |
| 123 | +def figure_2_1(): |
| 124 | + plt.violinplot(dataset=np.random.randn(200, 10) + np.random.randn(10)) |
| 125 | + plt.xlabel("Action") |
| 126 | + plt.ylabel("Reward distribution") |
| 127 | + #plt.savefig('../images/figure_2_1.png') |
| 128 | + plt.close() |
| 129 | + |
| 130 | + |
| 131 | +def figure_2_2(runs=2000, time=1000): |
| 132 | + epsilons = [0, 0.1, 0.01] |
| 133 | + bandits = [Bandit(epsilon=eps, sample_averages=True) for eps in epsilons] |
| 134 | + best_action_counts, rewards = simulate(runs, time, bandits) |
| 135 | + |
| 136 | + plt.figure(figsize=(10, 20)) |
| 137 | + |
| 138 | + plt.subplot(2, 1, 1) |
| 139 | + for eps, rewards in zip(epsilons, rewards): |
| 140 | + plt.plot(rewards, label='epsilon = %.02f' % (eps)) |
| 141 | + plt.xlabel('steps') |
| 142 | + plt.ylabel('average reward') |
| 143 | + plt.legend() |
| 144 | + |
| 145 | + plt.subplot(2, 1, 2) |
| 146 | + for eps, counts in zip(epsilons, best_action_counts): |
| 147 | + plt.plot(counts, label='epsilon = %.02f' % (eps)) |
| 148 | + plt.xlabel('steps') |
| 149 | + plt.ylabel('% optimal action') |
| 150 | + plt.legend() |
| 151 | + |
| 152 | + #plt.savefig('../images/figure_2_2.png') |
| 153 | + plt.close() |
| 154 | + |
| 155 | + |
| 156 | +def figure_2_3(runs=2000, time=1000): |
| 157 | + bandits = [] |
| 158 | + bandits.append(Bandit(epsilon=0, initial=5, step_size=0.1)) |
| 159 | + bandits.append(Bandit(epsilon=0.1, initial=0, step_size=0.1)) |
| 160 | + best_action_counts, _ = simulate(runs, time, bandits) |
| 161 | + |
| 162 | + plt.plot(best_action_counts[0], label='epsilon = 0, q = 5') |
| 163 | + plt.plot(best_action_counts[1], label='epsilon = 0.1, q = 0') |
| 164 | + plt.xlabel('Steps') |
| 165 | + plt.ylabel('% optimal action') |
| 166 | + plt.legend() |
| 167 | + |
| 168 | + #plt.savefig('../images/figure_2_3.png') |
| 169 | + plt.close() |
| 170 | + |
| 171 | + |
| 172 | +def figure_2_4(runs=2000, time=1000): |
| 173 | + bandits = [] |
| 174 | + bandits.append(Bandit(epsilon=0, UCB_param=2, sample_averages=True)) |
| 175 | + bandits.append(Bandit(epsilon=0.1, sample_averages=True)) |
| 176 | + _, average_rewards = simulate(runs, time, bandits) |
| 177 | + |
| 178 | + plt.plot(average_rewards[0], label='UCB c = 2') |
| 179 | + plt.plot(average_rewards[1], label='epsilon greedy epsilon = 0.1') |
| 180 | + plt.xlabel('Steps') |
| 181 | + plt.ylabel('Average reward') |
| 182 | + plt.legend() |
| 183 | + |
| 184 | + #plt.savefig('../images/figure_2_4.png') |
| 185 | + plt.close() |
| 186 | + |
| 187 | + |
| 188 | +def figure_2_5(runs=2000, time=1000): |
| 189 | + bandits = [] |
| 190 | + bandits.append(Bandit(gradient=True, step_size=0.1, gradient_baseline=True, true_reward=4)) |
| 191 | + bandits.append(Bandit(gradient=True, step_size=0.1, gradient_baseline=False, true_reward=4)) |
| 192 | + bandits.append(Bandit(gradient=True, step_size=0.4, gradient_baseline=True, true_reward=4)) |
| 193 | + bandits.append(Bandit(gradient=True, step_size=0.4, gradient_baseline=False, true_reward=4)) |
| 194 | + best_action_counts, _ = simulate(runs, time, bandits) |
| 195 | + labels = ['alpha = 0.1, with baseline', |
| 196 | + 'alpha = 0.1, without baseline', |
| 197 | + 'alpha = 0.4, with baseline', |
| 198 | + 'alpha = 0.4, without baseline'] |
| 199 | + |
| 200 | + for i in range(len(bandits)): |
| 201 | + plt.plot(best_action_counts[i], label=labels[i]) |
| 202 | + plt.xlabel('Steps') |
| 203 | + plt.ylabel('% Optimal action') |
| 204 | + plt.legend() |
| 205 | + |
| 206 | + #plt.savefig('../images/figure_2_5.png') |
| 207 | + plt.close() |
| 208 | + |
| 209 | + |
| 210 | +def figure_2_6(runs=2000, time=1000): |
| 211 | + labels = ['epsilon-greedy', 'gradient bandit', |
| 212 | + 'UCB', 'optimistic initialization'] |
| 213 | + generators = [lambda epsilon: Bandit(epsilon=epsilon, sample_averages=True), |
| 214 | + lambda alpha: Bandit(gradient=True, step_size=alpha, gradient_baseline=True), |
| 215 | + lambda coef: Bandit(epsilon=0, UCB_param=coef, sample_averages=True), |
| 216 | + lambda initial: Bandit(epsilon=0, initial=initial, step_size=0.1)] |
| 217 | + parameters = [np.arange(-7, -1, dtype=np.float), |
| 218 | + np.arange(-5, 2, dtype=np.float), |
| 219 | + np.arange(-4, 3, dtype=np.float), |
| 220 | + np.arange(-2, 3, dtype=np.float)] |
| 221 | + |
| 222 | + bandits = [] |
| 223 | + for generator, parameter in zip(generators, parameters): |
| 224 | + for param in parameter: |
| 225 | + bandits.append(generator(pow(2, param))) |
| 226 | + |
| 227 | + _, average_rewards = simulate(runs, time, bandits) |
| 228 | + rewards = np.mean(average_rewards, axis=1) |
| 229 | + |
| 230 | + i = 0 |
| 231 | + for label, parameter in zip(labels, parameters): |
| 232 | + l = len(parameter) |
| 233 | + plt.plot(parameter, rewards[i:i+l], label=label) |
| 234 | + i += l |
| 235 | + plt.xlabel('Parameter(2^x)') |
| 236 | + plt.ylabel('Average reward') |
| 237 | + plt.legend() |
| 238 | + |
| 239 | + #plt.savefig('../images/figure_2_6.png') |
| 240 | + plt.close() |
| 241 | + |
| 242 | + |
| 243 | +if __name__ == '__main__': |
| 244 | + figure_2_1() |
| 245 | + figure_2_2() |
| 246 | + figure_2_3() |
| 247 | + figure_2_4() |
| 248 | + figure_2_5() |
| 249 | + |
| 250 | +plt.violinplot(dataset=np.random.randn(200, 10) + np.random.randn(10)) |
| 251 | +plt.xlabel("Action") |
| 252 | +plt.ylabel("Reward distribution") |
| 253 | + |
| 254 | +# bandits = [] |
| 255 | +# bandits.append(Bandit(epsilon=0, initial=5, step_size=0.1)) |
| 256 | +# bandits.append(Bandit(epsilon=0.1, initial=0, step_size=0.1)) |
| 257 | +# simulate(runs=2000, time=100, bandits=bandits) |
| 258 | + |
| 259 | + |
| 260 | + |
| 261 | + |
| 262 | + |
0 commit comments