-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_classification.py
376 lines (295 loc) · 13.3 KB
/
image_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from __future__ import print_function
from __future__ import division
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import time
import os
import copy
from torchvision.utils import save_image
print("PyTorch Version: ", torch.__version__)
print("Torchvision Version: ", torchvision.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--classes', type=int, choices=[2, 37], default=2, nargs='?')
parser.add_argument('-e', '--epochs', type=int, default=15, nargs='?')
parser.add_argument('-n', '--numlayers', type=int, choices=range(1, 6), default=1, nargs='?')
parser.add_argument('-b', '--update_batch_norm_params', action='store_true', default=False)
parser.add_argument('-d', '--data_augmentation', action='store_true', default=False)
parser.add_argument('-t', '--training_data', choices=['small', 'medium', 'large'], default='large')
parser.add_argument("--sophisticated_data_augs", choices=['none', 'cutmix', 'mixup', 'erase'], default=False)
parser.add_argument("--only_update_bn_params", action="store_true", default=False)
args = parser.parse_args()
if args.only_update_bn_params and not args.update_batch_norm_params:
print("Update or not update, choose one!")
exit()
# Top level data directory. Here we assume the format of the directory conforms
# to the ImageFolder structure
data_dir = f"./oxford-iiit-pet/dataset-" + args.training_data + "-train/" + str(args.classes) + "-class"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "resnet"
# Number of classes in the dataset
num_classes = args.classes
# Batch size for training (change depending on how much memory you have)
batch_size = 64
# Number of epochs to train for
num_epochs = args.epochs
def train_model(model, dataloaders, criterion, optimizer, scheduler, num_epochs, args, p_mixup=0.5):
since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
############################
# Apply Mixup augmentation #
############################
if phase == "train":
if args.sophisticated_data_augs == "mixup":
p = np.random.rand()
if p < p_mixup:
samples, labels = mixup(inputs, labels, 0.5)
elif args.sophisticated_data_augs == "cutmix":
p = np.random.rand()
if p < p_mixup:
samples, labels = cutmix(inputs, labels, 0.5)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
outputs = model(inputs)
if args.sophisticated_data_augs == "mixup" and phase == "train" and p < p_mixup:
loss = mixup_criterion(outputs, labels)
labels = labels[1]
elif args.sophisticated_data_augs == "cutmix" and phase == "train" and p < p_mixup:
loss = cutmix_criterion(outputs, labels)
labels = labels[1]
else:
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
scheduler.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
if phase == 'train':
epoch_acc = 0
else:
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(epoch_acc)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
def set_parameter_requires_grad(model, num_layers_trained, args):
for param in model.parameters():
param.requires_grad = False
target_layers = ["layer" + str(i) for i in range(4, 5 - num_layers_trained, -1)]
for name, param in model.named_parameters():
for layer in target_layers:
if layer in name:
if (not args.update_batch_norm_params) and 'bn' in name:
continue
elif args.only_update_bn_params and 'bn' not in name:
continue
else:
param.requires_grad = True
def initialize_model(model_name, num_classes, numlayers, args):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
model_ft = None
input_size = 0
if model_name == "resnet":
""" Resnet34
"""
model_ft = models.resnet34(weights=models.ResNet34_Weights.DEFAULT)
set_parameter_requires_grad(model_ft, numlayers, args)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
def get_test_accuracy(model, dataloaders):
model.eval()
running_loss = 0.0
running_corrects = 0
phase = "test"
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# forward
# Do not track history
with torch.set_grad_enabled(False):
# Get model outputs and calculate loss
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# Copied and edited from https://www.kaggle.com/code/riadalmadani/fastai-effb0-base-model-birdclef2023
def mixup(data, targets, alpha):
indices = torch.randperm(data.size(0))
shuffled_data = data[indices]
shuffled_targets = targets[indices]
lam = np.random.beta(alpha, alpha)
new_data = data * lam + shuffled_data * (1 - lam)
new_targets = [targets, shuffled_targets, lam]
return new_data, new_targets
# Copied and edited from https://www.kaggle.com/code/riadalmadani/fastai-effb0-base-model-birdclef2023
def mixup_criterion(preds, targets):
targets1, targets2, lam = targets[0], targets[1], targets[2]
criterion = nn.CrossEntropyLoss()
return lam * criterion(preds, targets1) + (1 - lam) * criterion(preds, targets2)
# Copied and edited from https://www.kaggle.com/code/riadalmadani/fastai-effb0-base-model-birdclef2023
def cutmix(data, targets, alpha):
indices = torch.randperm(data.size(0))
shuffled_data = data[indices]
shuffled_targets = targets[indices]
lam = np.random.beta(alpha, alpha)
bbx1, bby1, bbx2, bby2 = rand_bbox(data.size(), lam)
data[:, :, bbx1:bbx2, bby1:bby2] = data[indices, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (data.size()[-1] * data.size()[-2]))
new_targets = [targets, shuffled_targets, lam]
return data, new_targets
def cutmix_criterion(preds, targets):
targets1, targets2, lam = targets[0], targets[1], targets[2]
criterion = nn.CrossEntropyLoss()
return lam * criterion(preds, targets1) + (1 - lam) * criterion(preds, targets2)
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(W * cut_rat)
cut_h = int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, args.numlayers, args)
# Print the model we just instantiated
# print(model_ft)
# Data augmentation and normalization for training
# Just normalization for validation
if args.data_augmentation:
train_transforms = [
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
else:
train_transforms = [
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if args.sophisticated_data_augs == 'erase':
train_transforms.insert(-1, transforms.RandomErasing())
data_transforms = {
'train': transforms.Compose(train_transforms),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in
['train', 'val', 'test']}
# Create training and validation dataloaders
dataloaders_dict = {
x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=2) for x in
['train', 'val', 'test']}
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Send the model to GPU
model_ft = model_ft.to(device)
# Gather the parameters to be optimized/updated in this run. If we are
# finetuning we will be updating all parameters. However, if we are
# doing feature extract method, we will only update the parameters
# that we have just initialized, i.e. the parameters with requires_grad
# is True.
# Set up the loss fxn
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
layer_max_lrs = [1e-3, 1e-3, 1e-4, 1e-5, 1e-4]
params_dictionaries = []
for i in range(args.numlayers):
params_dictionaries.append({"params": []})
for name2, param2 in model_ft.named_parameters():
if "fc" in name2:
params_dictionaries[0]["params"].append(param2)
target_layers = ["layer" + str(i) for i in range(4, 5 - args.numlayers, -1)]
for i in range(len(target_layers)):
for name, param in model_ft.named_parameters():
if target_layers[i] in name:
# Skip batch norm layers if we are not updating them
if (not args.update_batch_norm_params) and 'bn' in name:
continue
elif args.only_update_bn_params and 'bn' not in name:
continue
params_dictionaries[i + 1]["params"].append(param)
optimizer_ft = optim.Adam(params_dictionaries, weight_decay=1e-5, lr=1e-7)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer_ft, max_lr=layer_max_lrs[:args.numlayers], pct_start=0.8,
steps_per_epoch=len(dataloaders_dict["train"]), epochs=num_epochs)
for name, param in model_ft.named_parameters():
if param.requires_grad:
print("\t", name)
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, scheduler, num_epochs, args)
get_test_accuracy(model_ft, dataloaders_dict)