-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag.py
288 lines (260 loc) · 12.1 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
from llama_index.core import SimpleDirectoryReader, Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import SummaryIndex, VectorStoreIndex, Document
from llama_index.core.tools import QueryEngineTool
from llama_index.core.agent import (
FunctionCallingAgentWorker,
ParallelAgentRunner,
ReActAgent,
)
from llama_index.core.query_engine import MultiStepQueryEngine, RetrieverQueryEngine
from llama_index.core.indices.query.query_transform.base import (
StepDecomposeQueryTransform,
)
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
class RAGAgent:
def __init__(self, cv_file_path, job_desc):
self.llm = OpenAI(model="gpt-4o-mini")
Settings.llm = self.llm
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
self.job_desc = job_desc
# load documents
documents = SimpleDirectoryReader(input_files=[cv_file_path]).load_data()
splitter = SentenceSplitter(chunk_size=1024)
self.cv_nodes = splitter.get_nodes_from_documents(documents)
documents = [Document(text=job_desc)]
splitter = SentenceSplitter(chunk_size=1024)
self.job_nodes = splitter.get_nodes_from_documents(documents)
self.cv_vector_tool = None
self.job_vector_tool = None
self.cv_summary_tool = None
self.job_summary_tool = None
self._get_vector_tools()
self._get_summary_tools()
def _get_vector_tools(self):
step_decompose_transform = StepDecomposeQueryTransform(
llm=self.llm, verbose=True
)
if self.cv_vector_tool is None:
cv_vector_index = VectorStoreIndex(self.cv_nodes)
cv_vector_query_engine = RetrieverQueryEngine.from_args(
retriever=cv_vector_index.as_retriever(), response_mode="compact"
)
self.cv_vector_tool = QueryEngineTool.from_defaults(
name="cv_vector_tool",
query_engine=cv_vector_query_engine,
description=(
"Useful for retrieving specific context about user's CV/resume."
),
)
cv_vector_ms_query_engine = MultiStepQueryEngine(
query_engine=cv_vector_query_engine,
query_transform=step_decompose_transform,
index_summary="Useful for retrieving specific context about user's CV/resume",
)
self.cv_vector_ms_tool = QueryEngineTool.from_defaults(
name="cv_vector_ms_tool",
query_engine=cv_vector_ms_query_engine,
description=(
"Useful for retrieving specific context about user's CV/resume."
),
)
if self.job_vector_tool is None:
job_vector_index = VectorStoreIndex(self.job_nodes)
job_vector_query_engine = RetrieverQueryEngine.from_args(
retriever=job_vector_index.as_retriever(), response_mode="compact"
)
self.job_vector_tool = QueryEngineTool.from_defaults(
name="job_vector_tool",
query_engine=job_vector_query_engine,
description=(
"Useful for retrieving specific context about job posting user is applying to."
),
)
job_vector_ms_query_engine = MultiStepQueryEngine(
query_engine=job_vector_query_engine,
query_transform=step_decompose_transform,
index_summary="Useful for retrieving specific context about job posting user is applying to.",
)
self.job_vector_ms_tool = QueryEngineTool.from_defaults(
name="job_vector_ms_tool",
query_engine=job_vector_ms_query_engine,
description=(
"Useful for retrieving specific context about job posting user is applying to."
),
)
def _get_summary_tools(self):
step_decompose_transform = StepDecomposeQueryTransform(
llm=self.llm, verbose=True
)
if self.cv_summary_tool is None:
cv_summary_index = SummaryIndex(self.cv_nodes)
cv_summary_query_engine = cv_summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
self.cv_summary_tool = QueryEngineTool.from_defaults(
name="cv_summary_tool",
query_engine=cv_summary_query_engine,
description=(
"Useful for summarization questions related to user's CV/resume."
),
)
cv_summary_ms_query_engine = MultiStepQueryEngine(
query_engine=cv_summary_query_engine,
query_transform=step_decompose_transform,
index_summary="Useful for summarization questions related to user's CV/resume.",
)
self.cv_summary_ms_tool = QueryEngineTool.from_defaults(
name="cv_summary_ms_tool",
query_engine=cv_summary_ms_query_engine,
description=(
"Useful for summarization questions related to user's CV/resume."
),
)
if self.job_summary_tool is None:
job_summary_index = SummaryIndex(self.job_nodes)
job_summary_query_engine = job_summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
self.job_summary_tool = QueryEngineTool.from_defaults(
name="job_summary_tool",
query_engine=job_summary_query_engine,
description=(
"Useful for summarization questions related to job posting user is applying to."
),
)
job_summary_ms_query_engine = MultiStepQueryEngine(
query_engine=job_summary_query_engine,
query_transform=step_decompose_transform,
index_summary="Useful for summarization questions related to job posting user is applying to.",
)
self.job_summary_ms_tool = QueryEngineTool.from_defaults(
name="job_summary_ms_tool",
query_engine=job_summary_ms_query_engine,
description=(
"Useful for summarization questions related to job posting user is applying to."
),
)
def _get_response_from_react(self, agent, prompt):
task = agent.create_task(prompt)
step_output = agent.run_step(task.task_id)
while not step_output.is_last:
step_output = agent.run_step(task.task_id)
response = agent.finalize_response(task.task_id)
for step in task.extra_state["current_reasoning"]:
print(step)
thoughts = [
step.thought
for step in task.extra_state["current_reasoning"]
if hasattr(step, "thought")
]
prev_two_thoughts = "\n".join(thoughts[-2:])
content_type = "cover letter" if "cover letter" in prompt else "tailored CV"
response = self.llm.complete(
f"""
Extract the {content_type} from the text below.
Provide only the {content_type} and no other text:
{prev_two_thoughts}
{response}
"""
)
return str(response)
def _auto_rag(self, prompt, use_react=False):
if use_react:
agent = ReActAgent.from_tools(
[self.cv_vector_ms_tool, self.cv_summary_ms_tool],
llm=self.llm,
verbose=True,
context=f"{self.job_desc}",
)
return self._get_response_from_react(agent, prompt)
else:
agent_worker = FunctionCallingAgentWorker.from_tools(
[
self.cv_vector_tool,
self.job_vector_tool,
self.cv_summary_tool,
self.job_summary_tool,
],
llm=self.llm,
verbose=True,
)
agent = ParallelAgentRunner(agent_worker)
response = agent.query(prompt)
return str(response)
def _guided_rag(self, beginning_prompt, use_react=False):
job_vector_query_engine = self.job_vector_tool.query_engine
hard_skills = job_vector_query_engine.query(
"What are the hard skills and tool knowledge required for this position?"
)
soft_skills = job_vector_query_engine.query(
"What are the soft skills required for this position?"
)
quals = job_vector_query_engine.query(
"What are the degrees required for this position?"
)
cv_vector_query_engine = self.cv_vector_ms_tool.query_engine
hard_skills_projects = cv_vector_query_engine.query(f"What work experience and projects in the CV provide evidence of the following skills?: {str(hard_skills)}")
hard_skills_evid = cv_vector_query_engine.query(f"Please elaborate on the following projects/work experience: {str(hard_skills_projects)}")
soft_skills_evid = cv_vector_query_engine.query(f"What concrete evidence does the CV provide of the following skills?: {str(soft_skills)}")
quals_evid = cv_vector_query_engine.query(str(quals))
cvsum = self.cv_summary_tool.query_engine.query("cv summary")
jobsum = self.job_summary_tool.query_engine.query("job summary")
prompt = f"""{beginning_prompt}
Focus on the following:
{str(hard_skills_evid)}
{str(soft_skills_evid)}
{str(quals_evid)}
CV summary:
{str(cvsum)}
Job description summary:
{str(jobsum)}"""
print(prompt)
if use_react:
agent = ReActAgent.from_tools(
[self.cv_vector_ms_tool, self.cv_summary_ms_tool],
llm=self.llm,
verbose=True,
context=f"{self.job_desc}",
)
return self._get_response_from_react(agent, prompt)
else:
# agent_worker = FunctionCallingAgentWorker.from_tools(
# [
# self.cv_vector_tool,
# self.job_vector_tool,
# self.cv_summary_tool,
# self.job_summary_tool,
# ],
# llm=self.llm,
# verbose=True,
# )
# agent = ParallelAgentRunner(agent_worker)
# response = agent.chat(prompt)
response = self.llm.complete(prompt)
return str(response)
def rag_task(self, task_type: str):
prompt = ""
if "react" in task_type:
cv_tools = "(user's CV summary provided in cv_summary_ms_tool and specific questions about user's CV answered using cv_vector_ms_tool)"
job_tools = "(job description provided in context)"
else:
cv_tools = "(user's CV summary provided in cv_summary_tool and specific questions about user's CV answered using cv_vector_tool)"
job_tools = "(job summary provided in job_summary_tool and specific questions about job answered using job_vector_tool)"
if "cv" in task_type:
prompt = f"Craft a new tailored CV using the user's CV {cv_tools} so that it is the best possible fit for the job description {job_tools}. Do not invent information not in the user's CV."
elif "cover_letter" in task_type:
prompt = f"Craft a cover letter using the user's CV {cv_tools} to demonstrate that the user is an ideal fit for the job {job_tools}. Do not invent information not in the user's CV."
else:
raise Exception("Invalid task type")
if task_type.startswith("guided"):
return self._guided_rag(prompt, "react" in task_type)
elif task_type.startswith("auto"):
return self._auto_rag(prompt, "react" in task_type)
else:
raise Exception("Invalid task type")