-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_processing.py
166 lines (133 loc) · 5.39 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import numpy as np
import pandas as pd
from scipy.stats import skew, kurtosis, mstats
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PowerTransformer, StandardScaler
class YeoJohnsonTransformer(BaseEstimator, TransformerMixin):
def __init__(self):
self.transformer = PowerTransformer(method='yeo-johnson')
self._transform_kind = None
def set_output(self, transform=None):
self._transform_kind = transform
return self
def fit(self, X, y=None):
self.transformer.fit(X)
return self
def transform(self, X):
transformed = self.transformer.transform(X)
if self._transform_kind == 'pandas':
if hasattr(X, "columns"):
return pd.DataFrame(transformed, columns=X.columns, index=X.index)
else:
return pd.DataFrame(transformed)
else:
return transformed
def get_feature_names_out(self):
pass
class Winsorizer(BaseEstimator, TransformerMixin):
def __init__(self, limits=[0.01, 0.01]):
self.limits = limits
self._transform_kind = None
def set_output(self, transform=None):
self._transform_kind = transform
return self
def fit(self, X, y=None):
# Winsorizer does not need to learn any parameters from X
return self
def transform(self, X):
if hasattr(X, "columns"):
X_values = X.values
col_names = X.columns
idx = X.index
else:
X_values = X
col_names = None
idx = None
winsorized = np.apply_along_axis(
lambda col: mstats.winsorize(col, limits=self.limits),
axis=0,
arr=X_values
)
if self._transform_kind == "pandas":
if col_names is not None:
return pd.DataFrame(winsorized, columns=col_names, index=idx)
else:
return pd.DataFrame(winsorized)
else:
return winsorized
def get_feature_names_out(self):
pass
class DataProcessor:
def __init__(self,
include_scaling=None,
skew_threshold=2,
kurtosis_threshold=10,
winsor_limits=[0.01, 0.01]):
self.include_scaling = include_scaling or []
self.skew_threshold = skew_threshold
self.kurtosis_threshold = kurtosis_threshold
self.winsor_limits = winsor_limits
self.preprocessing_pipeline = None
self.final_pipeline = None
def _categorize_features(self, X):
categories = {
'yeo_johnson_only': [],
'winsorizing_only': [],
'yeo_johnson_winsorizing': [],
'none': []
}
for col in X.columns:
col_skewness = skew(X[col])
col_kurtosis = kurtosis(X[col], fisher=False)
if (col_skewness > self.skew_threshold) & (col_kurtosis > self.kurtosis_threshold):
categories['yeo_johnson_winsorizing'].append(col)
elif col_skewness > self.skew_threshold:
categories['yeo_johnson_only'].append(col)
elif col_kurtosis > self.kurtosis_threshold:
categories['winsorizing_only'].append(col)
else:
categories['none'].append(col)
return categories
def _build_pipeline(self, columns, categories):
preprocessing_pipeline = ColumnTransformer(
transformers=[
('yeo_johnson_only', YeoJohnsonTransformer(),
categories['yeo_johnson_only']),
('winsorizing_only', Winsorizer(limits=self.winsor_limits),
categories['winsorizing_only']),
('yeo_johnson_winsorizing', Pipeline([
('yeo_johnson', YeoJohnsonTransformer()),
('winsor', Winsorizer(limits=self.winsor_limits))
]), categories['yeo_johnson_winsorizing']),
('none', 'passthrough', categories['none'])
],
n_jobs=-1
)
include_scaling = [i for i, col in enumerate(columns) if col in self.include_scaling]
scaling_transformer = ColumnTransformer(
transformers=[
('scaler', StandardScaler(), include_scaling)
],
remainder='passthrough', verbose_feature_names_out=False
)
final_pipeline = Pipeline([
('preprocessing', preprocessing_pipeline),
('scaling', scaling_transformer)
])
return final_pipeline
def fit(self, X, y=None):
X_df = pd.DataFrame(X).copy()
columns = X_df.columns
categories = self._categorize_features(X_df)
self.final_pipeline = self._build_pipeline(columns, categories)
self.final_pipeline.fit(X_df, y)
return self
def transform(self, X, y=None):
X_df = pd.DataFrame(X).copy()
return pd.DataFrame(self.final_pipeline.transform(X_df), index=X_df.index, columns=X_df.columns)
def fit_transform(self, X, y=None):
X_df = pd.DataFrame(X).copy()
self.fit(X_df, y)
return pd.DataFrame(self.final_pipeline.transform(X_df), index=X_df.index, columns=X_df.columns)