-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
88 lines (70 loc) · 2.73 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets.fashion_mnist import load_data
#trying to use the gpu power
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
print(tf.config.list_physical_devices('GPU'))
dataset = load_data()
(x_train, y_train), (x_test, y_test) = dataset
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#convert values to between 0 and 1
x_train = x_train / 255.0
x_test = x_test/255.0
#instansitate the model by stacking the layers on top of each other
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(128, activation='relu'), #create network of 128 neurons
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10) #create network of 10
])
#create the model by passing in an optimizer, loss function and metric
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
#fit the model with the data
model.fit(x_train, y_train, epochs=10)
#test the model
test_loss, test_accuracy = model.evaluate(x_test, y_test, verbose=2)
probability_model = tf.keras.Sequential([
model,
tf.keras.layers.Softmax() #logits to find probabilities
])
predictions = probability_model.predict(x_test)
predicted_label = np.argmax(predictions) #select max from the values returned
print(y_test[0]) #actual labels for the values
def plot_image(i, predictions_array, true_label, img):
true_label, img = true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
true_label = true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions[i], y_test, x_test)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions[i], y_test)
plt.tight_layout()
plt.show()