-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForest.py
642 lines (510 loc) · 19.9 KB
/
Forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#%%
import numpy as np
import math
import glob
import os
from utils.tif import read_tif, write_tif
from collections import Counter
ORG_IMG_DIR = r"D:\co2_data\DL\large_img\sentinel\preprocessing\10m"
LARGE_TIFS = glob.glob(os.path.join(ORG_IMG_DIR, "*.tif"))
class Forest:
_S1S2_YEAR_BAND = [tif_.split("\\")[-1][:-4] for tif_ in LARGE_TIFS]
_SIZE = 32
_TIME_SERIES = [
"brown",
"green",
"yellow",
]
_S1_BANDS = ["VV", "VH"]
_S2_BANDS = [
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
"B8",
"BR4",
"B11",
"B12",
"NDVI",
]
def __init__(self, sentinel, spec, age, timber):
self.sentinel = sentinel
self.spec = spec
self.age = age
self.timber = timber
self.major_spec = 0
self.major_age = 0
self.major_timber = 0
self._relabel_spec()
# self._relabel_age()
self._set_main_label()
def _relabel_spec(self):
"""
beech -> broadleaf, birch -> broadleaf, larch -> conifer, fir -> conifer
1-> 3, 8 -> 3, 4 -> 5, 6 -> 5
2->0, sugi
3->1, broadleaf
5->2, conifer
7->3, cypress
"""
self.spec[self.spec == 1] = 3
self.spec[self.spec == 8] = 3
self.spec[self.spec == 4] = 5
self.spec[self.spec == 6] = 5
self.spec[self.spec == 2] = 0
self.spec[self.spec == 3] = 1
self.spec[self.spec == 5] = 2
self.spec[self.spec == 7] = 3
def _relabel_age(self):
"""
0 - young age, 1 - mature age, 2 - harvesting age
"""
self.age[self.age == 65535] = 0
self.age[self.age <= 20] = 0
self.age[(self.age > 20) & (self.age < 50)] = 1
self.age[self.age >= 50] = 2
def _set_main_label(self):
# set_main_spec
(unique, counts) = np.unique(self.spec, return_counts=True)
spec_count = {c: u for u, c in zip(unique, counts)}
max_count = np.sort(counts)[-1]
self.major_spec = spec_count[max_count]
# set_main_age
(unique, counts) = np.unique(self.age, return_counts=True)
age_count = {c: u for u, c in zip(unique, counts)}
max_count = np.sort(counts)[-1]
self.major_age = age_count[max_count]
@staticmethod
def fill_missing_data(arr, missing_value_):
_WINDOW_SIZE = 9
_OFFSET = 1
(org_row, org_col) = arr.shape
(missing_index_rows, missing_index_cols) = np.where(arr == missing_value_)
if len(missing_index_rows) > 0:
for row, col in zip(missing_index_rows, missing_index_cols):
r_w = max(row - _OFFSET, 0)
r_w_n = min(row + _WINDOW_SIZE, org_row)
c_w = max(col - _OFFSET, 0)
c_w_n = min(col + _WINDOW_SIZE, org_col)
window = arr[r_w:r_w_n, c_w:c_w_n]
avg_window = window[window != missing_value_]
if len(avg_window) > 0:
arr[row, col] = window[window != missing_value_].mean()
else:
arr[row, col] = 0
return arr
@staticmethod
def create_mask_from_specs(arr):
arr[arr == 255] = 0
arr[arr > 1] = 1
return arr
@classmethod
def crop_index_training(cls, arr):
(rows, cols) = arr.shape
nrows = int(rows / cls._SIZE)
ncols = int(cols / cls._SIZE)
list_row = [(r * cls._SIZE, (r + 1) * cls._SIZE) for r in range(nrows)]
list_col = [(c * cls._SIZE, (c + 1) * cls._SIZE) for c in range(ncols)]
list_index = []
for (r, r_n) in list_row:
for (c, c_n) in list_col:
small_img = Forest.create_mask_from_specs(arr[r:r_n, c:c_n])
count = np.count_nonzero(small_img)
if count == math.pow(cls._SIZE, 2):
list_index.append(((r, r_n), (c, c_n)))
return list_index
@classmethod
def crop_index_infer(cls, tif):
arr, _ = read_tif(tif)
(rows, cols) = arr.shape
nrows = int(rows / cls._SIZE)
ncols = int(cols / cls._SIZE)
list_row = [(r * cls._SIZE, (r + 1) * cls._SIZE) for r in range(nrows)]
list_col = [(c * cls._SIZE, (c + 1) * cls._SIZE) for c in range(ncols)]
last_row = (nrows - cls._SIZE, nrows)
last_col = (ncols - cls._SIZE, ncols)
list_row.append(last_row)
list_col.append(last_col)
list_index = []
for (r, r_n) in list_row:
for (c, c_n) in list_col:
list_index.append(((r, r_n), (c, c_n)))
return list_index
@staticmethod
def crop_image(l_tif, l_index, fill_missing=True, crop_mode="training"):
_NODATA = -9999
if crop_mode == "infer":
# iterate the l_index, using same index for all the images
l_index = [l_index for _ in range(0, len(l_tif))]
elif crop_mode == "training":
# just to clarify each training image has its own index
l_index = l_index
crop_array = []
for tif, index_per_tif in zip(l_tif, l_index):
arr = read_tif(tif)[0]
for ((r, r_n), (c, c_n)) in index_per_tif:
splitted = arr[r:r_n, c:c_n]
if fill_missing:
splitted = Forest.fill_missing_data(
splitted, missing_value_=_NODATA
)
crop_array.append(splitted)
return crop_array
@classmethod
def stich_image(cls, region, npy_file, arr_band=0):
_FOREST_MAP = f"data/forest_map/{region}_forest_map.tif"
l_index = Forest.crop_index_infer(_FOREST_MAP)
forest_mask, _ = read_tif(_FOREST_MAP)
spec_arr = np.load(npy_file)
(rows, cols) = forest_mask.shape
zero_arr = np.zeros((rows, cols))
for ((r, r_n), (c, c_n)), spec_arr_idx in zip(l_index, spec_arr):
zero_arr[r:r_n, c:c_n] = spec_arr_idx[:, arr_band].reshape(
cls._SIZE, cls._SIZE
)
final_arr = forest_mask * (zero_arr + 1)
return final_arr
@staticmethod
def agg_infered_stitch(region, out_tif, *preds, forest_attr="spec"):
_FOREST_MAP = f"data/forest_map/{region}_forest_map.tif"
forest_mask, metadata = read_tif(_FOREST_MAP)
(rows, cols) = forest_mask.shape
stacked_ts_arr = np.stack(preds, axis=-1).reshape(rows * cols, -1)
final_arr = [Counter(ts_arr).most_common(1)[0][0] for ts_arr in stacked_ts_arr]
final_arr = np.array(final_arr).reshape(rows, cols)
if forest_attr == "spec":
print("area of sugi:", np.count_nonzero(final_arr[final_arr == 1]) / 100)
print("area of BF:", np.count_nonzero(final_arr[final_arr == 2]) / 100)
print("area of C:", np.count_nonzero(final_arr[final_arr == 3]) / 100)
print("area of cypress:", np.count_nonzero(final_arr[final_arr == 4]) / 100)
elif forest_attr == "age":
print(
"area of young forest:",
np.count_nonzero(final_arr[final_arr == 1]) / 100,
)
print(
"area of mature forest:",
np.count_nonzero(final_arr[final_arr == 2]) / 100,
)
print(
"area of harvesting age:",
np.count_nonzero(final_arr[final_arr == 3]) / 100,
)
write_tif(
final_arr,
metadata=metadata,
filename=out_tif,
)
@classmethod
def stack_crop_sentinel(
cls, s1s2_tif, l_index, cnn_mode="3d", crop_mode="training"
):
valid_s12yb_arr = []
if cnn_mode == "2d":
for s12yb in cls._S1S2_YEAR_BAND:
print(s12yb)
s12yb_tif = [s1s2 for s1s2 in s1s2_tif if s12yb in s1s2]
valid_s12yb_arr.append(
Forest.crop_image(
s12yb_tif, l_index, fill_missing=True, crop_mode=crop_mode
)
)
s1s2 = np.stack(valid_s12yb_arr, axis=3)
elif cnn_mode == "3d":
s1_sat = "s1"
s2_sat = "s2"
dem = "elevation"
time_series = cls._TIME_SERIES
s1_bands = cls._S1_BANDS
s2_bands = cls._S2_BANDS
bands_time_series = []
for bands1 in s1_bands:
bands_time_series.append(
[f"{s1_sat}_{time}_{bands1}" for time in time_series]
)
for bands2 in s2_bands:
bands_time_series.append(
[f"{s2_sat}_{time}_{bands2}" for time in time_series]
)
arr = []
for band in bands_time_series:
band_ts = []
for ts in band:
tifs = [ts_tif for ts_tif in s1s2_tif if ts in ts_tif]
band_ts.append(
Forest.crop_image(
tifs, l_index, fill_missing=True, crop_mode=crop_mode
)
)
dem_tifs = [dem_tif for dem_tif in s1s2_tif if dem in dem_tif]
band_ts.append(
Forest.crop_image(
dem_tifs, l_index, fill_missing=True, crop_mode=crop_mode
)
)
arr.append(np.stack(band_ts, axis=1))
print(band)
s1s2 = np.stack(arr, axis=1)
print(s1s2.shape)
return s1s2
@classmethod
def crop_label_img(cls, l_spec_tif, l_age_tif, l_timber_tif, l_index):
spec = Forest.crop_image(l_spec_tif, l_index, fill_missing=True)
age = Forest.crop_image(l_age_tif, l_index, fill_missing=True)
timber = Forest.crop_image(l_timber_tif, l_index, fill_missing=True)
return spec, age, timber
@classmethod
def gen_training_obj_from_tif(
cls, s1s2_tif, l_spec_tif, l_age_tif, l_timber_tif, cnn_mode="2d"
):
l_index = [Forest.crop_index_training(read_tif(tif)[0]) for tif in l_spec_tif]
s1s2 = Forest.stack_crop_sentinel(
s1s2_tif, l_index, cnn_mode=cnn_mode, crop_mode="training"
)
spec, age, timber = Forest.crop_label_img(
l_spec_tif, l_age_tif, l_timber_tif, l_index
)
return [Forest(s, sp, ag, ti) for s, sp, ag, ti in zip(s1s2, spec, age, timber)]
@classmethod
def gen_infer_obj_from_tif(cls, s1s2_tif, cnn_mode="3d"):
l_index = Forest.crop_index_infer(s1s2_tif[0])
s1s2 = Forest.stack_crop_sentinel(
s1s2_tif, l_index, cnn_mode=cnn_mode, crop_mode="infer"
)
return s1s2
def stack_s1s2_spec(self):
return np.dstack((self.sentinel, self.spec.reshape(self._SIZE, self._SIZE, 1)))
def stack_s1s2_age(self):
return np.dstack(
(
self.sentinel,
self.spec.reshape(self._SIZE, self._SIZE, 1),
self.age.reshape(self._SIZE, self._SIZE, 1),
)
)
class TreeSpecies(Forest):
_TRAIN_DIR = "../data/data_train/data_spec_40d_32x32/"
_IMG_FOLDER = "image/"
_MASK_FOLDER = "mask/"
_TRAIN_FOLDER = "train/"
_VAL_FOLDER = "val/"
_VAL_RATIO = 0.05 #
def __init__(self, list_forest_obj):
self.train = None
self.val = None
self._split_train_test(list_forest_obj)
# self._save_to_npy()
def _split_train_test(self, list_forest_obj):
unique_specs = np.unique([fr_obj.major_spec for fr_obj in list_forest_obj])
object_by_spec = {
unique_spec: (
[
forest_obj
for forest_obj in list_forest_obj
if forest_obj.major_spec == unique_spec
]
)
for unique_spec in unique_specs
}
val_set = [
object_by_spec[key][
0 : int(round(self._VAL_RATIO * len(object_by_spec[key])))
]
for key in object_by_spec.keys()
]
train_set = [
object_by_spec[key][
int(round(self._VAL_RATIO * len(object_by_spec[key]))) :
]
for key in object_by_spec.keys()
]
self.train = [obj for set_ in train_set for obj in set_]
self.val = [obj for set_ in val_set for obj in set_]
def _save_to_npy(self):
def _save(type_):
print(type_)
if type_ == self._TRAIN_FOLDER:
list_fr_obj = self.train
else:
list_fr_obj = self.val
image_dir = os.path.join(self._TRAIN_DIR, type_, self._IMG_FOLDER)
mask_dir = os.path.join(self._TRAIN_DIR, type_, self._MASK_FOLDER)
if not os.path.isdir(image_dir):
os.makedirs(image_dir)
if not os.path.isdir(mask_dir):
os.makedirs(mask_dir)
for idx, forest_obj in enumerate(list_fr_obj):
np.save(
os.path.join(
image_dir,
f"{idx}.npy",
),
forest_obj.sentinel,
# forest_obj.stack_s1s2_spec
# forest_obj.stack_s1s2_age(),
)
np.save(
os.path.join(
mask_dir,
f"{idx}.npy",
),
forest_obj.spec,
# forest_obj.age
# forest_obj.timber,
)
_save(type_=self._TRAIN_FOLDER)
_save(type_=self._VAL_FOLDER)
class TreeAge(Forest):
_TRAIN_DIR = "../data/data_train/data_age_14d_32x32/"
_IMG_FOLDER = "image/"
_MASK_FOLDER = "mask/"
_TRAIN_FOLDER = "train/"
_VAL_FOLDER = "val/"
_VAL_RATIO = 0.05 #
_VAL_RATIO_2 = 0.02
_TRAIN_SAMPLE_2 = 4000
def __init__(self, list_forest_obj):
self.train = None
self.val = None
self._split_train_test(list_forest_obj)
# self._save_to_npy()
def _split_train_test(self, list_forest_obj):
unique_ages = np.unique([fr_obj.major_age for fr_obj in list_forest_obj])
object_by_age = {
unique_age: (
[
forest_obj
for forest_obj in list_forest_obj
if forest_obj.major_age == unique_age
]
)
for unique_age in unique_ages
}
val_set = []
train_set = []
for key in object_by_age.keys():
if key != 2:
val_set.append(
object_by_age[key][
0 : int(round(self._VAL_RATIO * len(object_by_age[key])))
]
)
train_set.append(
object_by_age[key][
int(round(self._VAL_RATIO * len(object_by_age[key]))) :
]
)
elif key == 2:
val_set.append(
object_by_age[key][
0 : int(round(self._VAL_RATIO_2 * len(object_by_age[key])))
]
)
train_set.append(
object_by_age[key][
int(
round(self._VAL_RATIO_2 * len(object_by_age[key]))
) : self._TRAIN_SAMPLE_2
+ int(round(self._VAL_RATIO_2 * len(object_by_age[key])))
]
)
self.train = [obj for set_ in train_set for obj in set_]
self.val = [obj for set_ in val_set for obj in set_]
def _save_to_npy(self):
def _save(type_):
print(type_)
if type_ == self._TRAIN_FOLDER:
list_fr_obj = self.train
else:
list_fr_obj = self.val
image_dir = os.path.join(self._TRAIN_DIR, type_, self._IMG_FOLDER)
mask_dir = os.path.join(self._TRAIN_DIR, type_, self._MASK_FOLDER)
if not os.path.isdir(image_dir):
os.makedirs(image_dir)
if not os.path.isdir(mask_dir):
os.makedirs(mask_dir)
for idx, forest_obj in enumerate(list_fr_obj):
np.save(
os.path.join(
image_dir,
f"{idx}.npy",
),
forest_obj.sentinel,
)
np.save(
os.path.join(
mask_dir,
f"{idx}.npy",
),
forest_obj.age,
)
_save(type_=self._TRAIN_FOLDER)
_save(type_=self._VAL_FOLDER)
def gen_training_set(small_dir, res):
s1s2_tifs = glob.glob(os.path.join(small_dir, "sentinel", res, "*.tif"))
spec_tifs = glob.glob(os.path.join(small_dir, "spec", res, "*.tif"))
age_tifs = glob.glob(os.path.join(small_dir, "age", res, "*.tif"))
timber_tifs = glob.glob(os.path.join(small_dir, "timber", res, "*.tif"))
list_obj_forest = Forest.gen_training_obj_from_tif(
s1s2_tifs, spec_tifs, age_tifs, timber_tifs, cnn_mode="2d"
)
print("--- generating training set for species segmentation ---")
species = TreeSpecies(list_obj_forest)
print("--- generating training set for age segmentation ---")
age = TreeAge(list_obj_forest)
return species, age
def get_trainVal_stats(species_obj, age_obj):
spec_train = [obj.major_spec for obj in species_obj.train]
unique, counts = np.unique(spec_train, return_counts=True)
spec_count_train = {c: u for u, c in zip(unique, counts)}
spec_val = [obj.major_spec for obj in species_obj.val]
unique, counts = np.unique(spec_val, return_counts=True)
spec_count_val = {c: u for u, c in zip(unique, counts)}
age_train = [obj.major_age for obj in age_obj.train]
unique, counts = np.unique(age_train, return_counts=True)
age_count_train = {c: u for u, c in zip(unique, counts)}
age_val = [obj.major_age for obj in age_obj.val]
unique, counts = np.unique(age_val, return_counts=True)
age_count_val = {c: u for u, c in zip(unique, counts)}
return spec_count_train, spec_count_val, age_count_train, age_count_val
def gen_infer_set(img_dir, region):
img_dir = os.path.join(img_dir, region)
out_file = f"data/data_infer/input/{region}_13b.npy"
list_tif = glob.glob(os.path.join(img_dir, "*.tif"))
infer_input = Forest.gen_infer_obj_from_tif(list_tif, cnn_mode="3d")
np.save(out_file, infer_input)
def gen_predicted_map(region, npy_file, out_tif, forest_attr="spec"):
pb1 = Forest.stich_image(region, npy_file, 0)
pb2 = Forest.stich_image(region, npy_file, 1)
pb3 = Forest.stich_image(region, npy_file, 2)
if forest_attr == "spec":
pb4 = Forest.stich_image(region, npy_file, 3)
Forest.agg_infered_stitch(
region, out_tif, pb1, pb2, pb3, pb4, forest_attr=forest_attr
)
elif forest_attr == "age":
Forest.agg_infered_stitch(
region, out_tif, pb1, pb2, pb3, forest_attr=forest_attr
)
def sample_run():
"""Generate training dataset"""
SMALL_DIR = r"D:\co2_data\DL\small_img"
RES = "10m"
species_obj, age_obj = gen_training_set(SMALL_DIR, RES)
"""Check number of samples for training and validation"""
(
spec_count_train,
spec_count_val,
age_count_train,
age_count_val,
) = get_trainVal_stats(species_obj, age_obj)
"""Generate input to inference"""
REGION = "ena"
IMG_DIR = r"D:\co2_data\DL\large_img\sentinel\preprocessing"
gen_infer_set(IMG_DIR, REGION, forest_attr="spec")
"""Generate predicted spec/age map"""
CASE = "3d_aspp_enc_bot_dec_7780_2"
gen_predicted_map(IMG_DIR, REGION, CASE, forest_attr="spec")
gen_predicted_map(IMG_DIR, REGION, CASE, forest_attr="age")