-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusohu_parser.py
300 lines (279 loc) · 11.2 KB
/
musohu_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from typing import Any, Union, Callable
import os, sys
from pathlib import Path
import pickle
from rich import print
import rosbag
from pyntcloud import PyntCloud
from tqdm import tqdm
from scipy.signal import savgol_filter
from utils import *
import numpy as np
class MuSoHuParser:
def __init__(self, cfg):
self.cfg = cfg
def process_images(self, im_list: list, img_process_func: Callable) -> list:
"""
Process image data from a topic that publishes ros images into a list of PIL images
"""
images = []
for img_msg in im_list:
img = img_process_func(img_msg)
images.append(img)
return images
def process_odom(
self,
odom_list: list,
action_list: list,
odom_process_func: Any,
ang_offset: float = 0.0,
) -> dict[np.ndarray, np.ndarray]:
"""
Process odom data from a topic that publishes nav_msgs/Odometry into position and yaw
"""
xys = []
yaws = []
vws = []
for odom_msg, action_msg in zip(odom_list, action_list):
xy, vw, yaw = odom_process_func(odom_msg, action_msg, ang_offset)
xys.append(xy)
yaws.append(yaw)
vws.append(vw)
return {"position": np.array(xys), "yaw": np.array(yaws), "vw": np.array(vws)}
def get_images_and_odom_and_pc(
self,
bag: rosbag.Bag,
imtopics: Union[list[str], str],
odomtopics: Union[list[str], str],
depthtopics: Union[list[str], str],
lidartopics: Union[list[str], str],
actiontopics: Union[list[str], str],
img_process_func: Any,
depth_process_func: Any,
lidar_process_func: Any,
odom_process_func: Any,
rate: float = 4.0,
ang_offset: float = 0.0,
):
"""
Get image, depth, lidar and odom data from a bag file
Args:
bag (rosbag.Bag): bag file
imtopics (Union[list[str], str]): topic name(s) for image data
odomtopics (Union[list[str], str]): topic name(s) for odom data
depthtopics (Union[list[str], str]): topic name(s) for depth data
lidartopics (Union[list[str], str]): topic name(s) for lidar data
actiontopics (Union[list[str], str]): topic name(s) for action data
img_process_func (Any): function to process image data
depth_process_func (Any): function to process depth data
lidar_process_func (Any): function to process lidar data
odom_process_func (Any): function to process odom data
rate (float, optional): rate to sample data. Defaults to 4.0.
ang_offset (float, optional): angle offset to add to odom data. Defaults to 0.0.
Returns:
img_data (list): list of PIL images
depth_data (list): list of PIL images
lidar_data (list): list of np.arrays
traj_data (list): list of odom and linear/angular velocity data
"""
print('Checking all topics ****************')
print(bag.get_type_and_topic_info().topics.keys())
# check if bag has both topics
odomtopic = None
actiontopic = None
imtopic = None
dptopic = None
pctopic = None
if type(imtopics) == str:
imtopic = imtopics
else:
for imt in imtopics:
if bag.get_message_count(imt) > 0:
imtopic = imt
break
if type(odomtopics) == str:
odomtopic = odomtopics
else:
for ot in odomtopics:
if bag.get_message_count(ot) > 0:
odomtopic = ot
break
if type(actiontopics) == str:
actiontopic = actiontopics
else:
for ac in actiontopics:
if bag.get_message_count(ac) > 0:
actiontopic = ac
break
if type(depthtopics) == str:
dptopic = depthtopics
else:
for dp in depthtopics:
if bag.get_message_count(dp) > 0:
dptopic = dp
break
if type(lidartopics) == str:
pctopic = lidartopics
else:
for pc in lidartopics:
if bag.get_message_count(pc) > 0:
pctopic = pc
break
print('Topics: ***********')
print(imtopic)
print(actiontopic)
print(odomtopic)
print(dptopic)
print(pctopic)
if not (imtopic and actiontopic and odomtopic and dptopic and pctopic):
# bag doesn't have topics
return None, None, None, None
synced_imdata = []
synced_odomdata = []
synced_actiondata = []
synced_depthdata = []
synced_pcdata = []
# get start time of bag in seconds
currtime = bag.get_start_time()
starttime = currtime
curr_imdata = None
curr_odomdata = None
curr_actiondata = None
curr_depthdata = None
curr_pcdata = None
times = []
for topic, msg, t in bag.read_messages(
topics=[imtopic, odomtopic, actiontopic, dptopic, pctopic]
):
if t.to_sec() - starttime < self.cfg.skip_first_seconds:
# skip the first few seconds
continue
if topic == imtopic:
curr_imdata = msg
elif topic == odomtopic:
curr_odomdata = msg
elif topic == actiontopic:
curr_actiondata = msg
elif topic == dptopic:
curr_depthdata = msg
elif topic == pctopic:
curr_pcdata = process_pointclouds(msg)
if (t.to_sec() - currtime) >= 1.0 / rate:
if (
curr_imdata is not None
and curr_odomdata is not None
and curr_depthdata is not None
and curr_actiondata is not None
and curr_pcdata is not None
):
synced_imdata.append(curr_imdata)
synced_odomdata.append(curr_odomdata)
synced_actiondata.append(curr_actiondata)
synced_depthdata.append(curr_depthdata)
synced_pcdata.append(curr_pcdata)
currtime = t.to_sec()
times.append(currtime - starttime)
img_data = self.process_images(synced_imdata, img_process_func)
depth_data = self.process_images(synced_depthdata, depth_process_func)
pc_data = synced_pcdata
traj_data: dict = self.process_odom(
synced_odomdata,
synced_actiondata,
odom_process_func,
ang_offset=ang_offset,
)
# smoothing pos and actions
traj_data["yaw"] = savgol_filter(
traj_data["yaw"], window_length=31, polyorder=3, mode="nearest"
)
traj_data["vw"][:, 0] = savgol_filter(
traj_data["vw"][:, 0], window_length=31, polyorder=3, mode="nearest"
)
traj_data["vw"][:, 1] = savgol_filter(
traj_data["vw"][:, 1], window_length=31, polyorder=3, mode="nearest"
)
traj_data["position"][:, 0] = savgol_filter(
traj_data["position"][:, 0], window_length=31, polyorder=3, mode="nearest"
)
traj_data["position"][:, 1] = savgol_filter(
traj_data["position"][:, 1], window_length=31, polyorder=3, mode="nearest"
)
return img_data, traj_data, depth_data, pc_data
def parse_bags(self, bag_path) -> None:
# id = 0
# bag_files = Path(self.cfg.bags_dir).resolve()
parsed_dir = Path(self.cfg.parsed_dir).resolve()
# bag_files = [str(x) for x in bag_files.iterdir() if x.suffix == ".bag"]
# bar = tqdm(bag_files, desc="Bags processed")
# for bag_path in bar:
try:
b = rosbag.Bag(bag_path)
except rosbag.ROSBagException as e:
print(e)
print(f"Error loading {bag_path}. Skipping...")
# name is that folders separated by _ and then the last part of the path
traj_name = "_".join(bag_path.split("/")[-1:])[9:-4]
# bar.set_postfix(Bag=f"{traj_name}")
# parse data
(
bag_img_data,
bag_traj_data,
bag_depth_data,
bag_pc_data,
) = self.get_images_and_odom_and_pc(
b,
self.cfg.topics.rgb,
self.cfg.topics.odom,
self.cfg.topics.depth,
self.cfg.topics.lidar,
self.cfg.topics.cmd_vel,
eval(self.cfg.functions.rgb),
eval(self.cfg.functions.depth),
eval(self.cfg.functions.lidar),
eval(self.cfg.functions.odom),
rate=self.cfg.sample_rate,
ang_offset=self.cfg.ang_offset,
)
if bag_img_data is None or bag_traj_data is None:
print(
f"{bag_path} did not have the topics we were looking for. Skipping..."
)
return
# print(f"Working on bag: {bag_path}")
# remove backwards movement
cut_trajs = filter_backwards(
bag_img_data, bag_traj_data, bag_depth_data, bag_pc_data
)
for i, (img_data_i, traj_data_i, depth_data_i, pc_data_i) in enumerate(
cut_trajs
):
if len(img_data_i) < self.cfg.skip_traj_shorter:
# skip trajectories with less than 20 frames
# print(f"Skipping trajectory, it is less that {self.cfg.skip_traj_shorter}.")
continue
traj_name_i = f"{traj_name}_{i}"
traj_folder_i = parsed_dir / traj_name_i
output_rgb = str(traj_folder_i / "rgb")
output_pc = str(traj_folder_i / "point_cloud")
output_depth = str(traj_folder_i / "depth")
# make a folder for the traj
if not os.path.exists(traj_folder_i):
os.makedirs(traj_folder_i, exist_ok=True)
if not os.path.exists(output_rgb):
os.makedirs(output_rgb, exist_ok=True)
if not os.path.exists(output_pc):
os.makedirs(output_pc, exist_ok=True)
if not os.path.exists(output_depth):
os.makedirs(output_depth, exist_ok=True)
with open(str(traj_folder_i / "traj_data.pkl"), "wb") as f:
pickle.dump(traj_data_i, f)
# save the image data to disk
for i, img in enumerate(img_data_i):
img.save(os.path.join(output_rgb, f"{i}.jpg"))
# save the depth data to disk
for i, img in enumerate(depth_data_i):
img.save(os.path.join(output_depth, f"{i}.jpg"))
# save the pc data to disk
for i, pc in enumerate(pc_data_i):
pc = PyntCloud(pc)
pc.to_file(os.path.join(output_pc, f"{i}.ply"))