-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
39 lines (31 loc) · 2.04 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
layout: default
title: Index
---
<h1>Deep Learning Hackathon</h1>
The Analytics Club, CFI IIT-M presents the annual <b>Deep Learning Hackathon</b> to recognize top Machine Learning enthusiasts within the institute to solve challenging problems.
The competition is split into two tracks:
<ul>
<li><a href="track1">Track - 1</a> (Computer Vision): Deepfake Detection</li>
<li><a href="track2">Track - 2</a> (Natural Language Processing): Abstract Generation using Research Paper Titles</li>
</ul>
Please visit the corresponding tabs for more information. For queries please visit the <a href="faq">FAQ</a> or you could contact us via email - <a href="mailto:analyticsclubcfi.iitm@gmail.com">analyticsclubcfi.iitm@gmail.com</a>.
If interested, please make sure to register for this hackathon <a href="register">here</a>
<h3>Prizes</h3>
Top 2 winners from each track will each be awarded <b>$5000</b> of AWS credits + cash prizes, along with certificates.
<h3>Deadline</h3>
The competition closes on <b>April 30th at 11:59 PM</b><br>
<div class="img-rounded" style="background-color: #fffbcf; width: 100%; height: 260px; border: 1px solid black; margin: 10px;">
<h3 style="color: #ffffff; background-color: #2a4e57; text-align: center; margin: 0px; padding: 0px;">Announcements</h3>
<div id="cc-homepage-announcements" style="height: 200px; overflow-x: hidden; overflow-y: auto; padding: 6px; text-align: left;">
<ul>
<li>
<b>[19 April 2021 06:00:33 PM IST]</b> <i>For the sake of clarification, in Track 1 you are <b>NOT</b> allowed to use pretrained models. However, pretrained language models <b>CAN</b> be used in Track 2</i>
</li>
<li>
<b>[16 April 2021 02:55:22 PM IST]</b> <i>If using collab, we strongly recommend the participants to directly download the datasets onto their drive via collab (due to faster download speeds > 100MBPS) instead of manually downloading it and then uploading it to drive.
Instructions regarding how to do the same is provided in the dataset information for each track.</i>
</li>
</ul>
</div>
</div>