-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_sequence_decoder.py
182 lines (141 loc) · 5.22 KB
/
train_sequence_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import typing as T
from pathlib import Path
import os
import hydra
import lightning as L
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.utilities import rank_zero_only
from omegaconf import DictConfig, OmegaConf
import torch
import time
from plaid.utils import get_model_device
from plaid.transforms import get_random_sequence_crop_batch
"""
Helper Functions
"""
def make_embedder(lm_embedder_type):
start = time.time()
print(f"making {lm_embedder_type}...")
if "esmfold" in lm_embedder_type:
# from plaid.denoisers.esmfold import ESMFold
from plaid.esmfold import esmfold_v1
embedder = esmfold_v1()
alphabet = None
else:
print("loading LM from torch hub")
embedder, alphabet = torch.hub.load(
"facebookresearch/esm:main", lm_embedder_type
)
embedder = embedder.eval().to("cuda")
for param in embedder.parameters():
param.requires_grad = False
end = time.time()
print(f"done loading model in {end - start:.2f} seconds.")
return embedder, alphabet
def embed_batch_esmfold(esmfold, sequences, max_len=512, embed_result_key="s"):
with torch.no_grad():
# don't disgard short sequences since we're also saving headers
sequences = get_random_sequence_crop_batch(
sequences, max_len=max_len, min_len=0
)
seq_lens = [len(seq) for seq in sequences]
embed_results = esmfold.infer_embedding(sequences, return_intermediates=True)
feats = embed_results[embed_result_key].detach()
seq_lens = torch.tensor(seq_lens, device="cpu", dtype=torch.int16)
return feats, seq_lens, sequences
def embed_batch_esm(embedder, sequences, batch_converter, repr_layer, max_len=512):
sequences = get_random_sequence_crop_batch(sequences, max_len=max_len, min_len=0)
seq_lens = [len(seq) for seq in sequences]
seq_lens = torch.tensor(seq_lens, device="cpu", dtype=torch.int16)
batch = [("", seq) for seq in sequences]
_, _, tokens = batch_converter(batch)
device = get_model_device(embedder)
tokens = tokens.to(device)
with torch.no_grad():
results = embedder(tokens, repr_layers=[repr_layer], return_contacts=False)
feats = results["representations"][repr_layer]
return feats, seq_lens, sequences
"""
Training
"""
@hydra.main(
version_base=None, config_path="configs", config_name="train_sequence_decoder"
)
def train(cfg: DictConfig):
"""
Set up device and data module
"""
torch.set_float32_matmul_precision("medium")
log_cfg = OmegaConf.to_container(cfg, throw_on_missing=True, resolve=True)
if rank_zero_only.rank == 0:
print(OmegaConf.to_yaml(log_cfg))
datamodule = hydra.utils.instantiate(cfg.datamodule)
datamodule.setup(stage="fit")
max_seq_len = cfg.max_seq_len
# maybe set up the scaler
try:
latent_scaler = hydra.utils.instantiate(cfg.latent_scaler)
print("scaling")
except:
latent_scaler = None
print("not scaling")
"""
Set up the embedding model
"""
lm_embedder_type = cfg.lm_embedder_type
embedder, alphabet = make_embedder(lm_embedder_type)
# processing for grabbing intermediates from ESMFold
if "esmfold" in lm_embedder_type:
batch_converter = None
repr_layer = None
if lm_embedder_type == "esmfold":
embed_result_key = "s"
elif lm_embedder_type == "esmfold_pre_mlp":
embed_result_key = "s_post_softmax"
else:
raise ValueError(f"lm embedder type {lm_embedder_type} not understood.")
# processing for ESM LM-only models
else:
batch_converter = alphabet.get_batch_converter()
repr_layer = int(lm_embedder_type.split("_")[1][1:])
embed_result_key = None
"""
Make the embedding function
"""
embedder = embedder.eval().requires_grad_(False)
if "esmfold" in lm_embedder_type:
fn = lambda seqs: embed_batch_esmfold(
embedder, seqs, max_seq_len, embed_result_key
)[0]
else:
fn = lambda seqs: embed_batch_esm(
embedder, seqs, batch_converter, repr_layer, max_seq_len
)
"""
Run training
"""
model = hydra.utils.instantiate(
cfg.sequence_decoder,
training_embed_from_sequence_fn=fn,
latent_scaler=latent_scaler,
)
job_id = os.environ.get("SLURM_JOB_ID") # is None if not using SLURM
dirpath = Path(cfg.paths.checkpoint_dir) / "sequence_decoder" / job_id
if not cfg.dryrun:
logger = hydra.utils.instantiate(cfg.logger, id=job_id)
logger.watch(model, log="all", log_graph=False)
else:
logger = None
lr_monitor = hydra.utils.instantiate(cfg.callbacks.lr_monitor)
checkpoint_callback = hydra.utils.instantiate(
cfg.callbacks.checkpoint, dirpath=dirpath
)
trainer = hydra.utils.instantiate(
cfg.trainer, logger=logger, callbacks=[lr_monitor, checkpoint_callback]
)
if rank_zero_only.rank == 0 and isinstance(trainer.logger, WandbLogger):
trainer.logger.experiment.config.update({"cfg": log_cfg}, allow_val_change=True)
if not cfg.dryrun:
trainer.fit(model, datamodule=datamodule)
if __name__ == "__main__":
train()