-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_benchmark.py
208 lines (168 loc) · 5.99 KB
/
run_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import hydra
import sys
import math
import pprint
import shutil
import logging
import argparse
import numpy as np
import time
import yaml
import easydict
from pathlib import Path
import uuid
import torch
from torch import distributed as dist
from omegaconf import OmegaConf, DictConfig
import torchdrug
from torchdrug import core, datasets, tasks, models, layers
from torchdrug.utils import comm
from plaid.benchmarking import ours, flip
def resolve_cfg(cfg: DictConfig):
cfg = OmegaConf.to_container(cfg, resolve=True)
cfg = easydict.EasyDict(cfg)
return cfg
def get_root_logger(file=True):
logger = logging.getLogger("")
logger.setLevel(logging.INFO)
format = logging.Formatter("%(asctime)-10s %(message)s", "%H:%M:%S")
if file:
handler = logging.FileHandler("log.txt")
handler.setFormatter(format)
logger.addHandler(handler)
return logger
def create_working_directory(cfg):
file_name = "working_dir.tmp"
hashid = uuid.uuid4().hex[:7]
world_size = comm.get_world_size()
if world_size > 1 and not dist.is_initialized():
comm.init_process_group("nccl", init_method="env://")
output_dir = os.path.join(
os.path.expanduser(cfg.output_dir),
cfg.task["class"],
cfg.dataset["class"],
cfg.task.model["class"] + "_" + time.strftime("%Y-%m-%d-%H-%M-%S") + "_" + hashid,
)
# synchronize working directory
if comm.get_rank() == 0:
with open(file_name, "w") as fout:
fout.write(output_dir)
os.makedirs(output_dir)
comm.synchronize()
if comm.get_rank() != 0:
with open(file_name, "r") as fin:
output_dir = fin.read()
comm.synchronize()
if comm.get_rank() == 0:
try:
os.remove(file_name)
except:
pass
os.chdir(output_dir)
return output_dir
def set_seed(seed):
torch.manual_seed(seed + comm.get_rank())
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return
def build_solver(cfg, logger):
# build dataset
_dataset = core.Configurable.load_config_dict(cfg.dataset)
if "test_split" in cfg:
train_set, valid_set, test_set = _dataset.split(["train", "valid", cfg.test_split])
else:
train_set, valid_set, test_set = _dataset.split()
if comm.get_rank() == 0:
logger.warning(_dataset)
logger.warning("#train: %d, #valid: %d, #test: %d" % (len(train_set), len(valid_set), len(test_set)))
# build task model
if cfg.task["class"] in ["PropertyPrediction", "InteractionPrediction"]:
cfg.task.task = _dataset.tasks
task = core.Configurable.load_config_dict(cfg.task)
# fix the pre-trained encoder if specified
# fix_encoder = cfg.get("fix_encoder", False)
# fix_encoder2 = cfg.get("fix_encoder2", False)
# if fix_encoder:
# for p in task.model.parameters():
# p.requires_grad = False
# if fix_encoder2:
# for p in task.model2.parameters():
# p.requires_grad = False
# build solver
cfg.optimizer.params = task.parameters()
optimizer = core.Configurable.load_config_dict(cfg.optimizer)
if not "scheduler" in cfg:
scheduler = None
else:
cfg.scheduler.optimizer = optimizer
scheduler = core.Configurable.load_config_dict(cfg.scheduler)
solver = core.Engine(task, train_set, valid_set, test_set, optimizer, scheduler, **cfg.engine)
if "lr_ratio" in cfg:
cfg.optimizer.params = [
{"params": solver.model.model.parameters(), "lr": cfg.optimizer.lr * cfg.lr_ratio},
{"params": solver.model.mlp.parameters(), "lr": cfg.optimizer.lr},
]
optimizer = core.Configurable.load_config_dict(cfg.optimizer)
solver.optimizer = optimizer
if "checkpoint" in cfg:
solver.load(cfg.checkpoint, load_optimizer=False)
return solver
def train_and_validate(cfg, solver):
step = math.ceil(cfg.train.num_epoch / 10)
best_score = float("-inf")
best_epoch = -1
if not cfg.train.num_epoch > 0:
return solver, best_epoch
for i in range(0, cfg.train.num_epoch, step):
kwargs = cfg.train.copy()
kwargs["num_epoch"] = min(step, cfg.train.num_epoch - i)
solver.model.split = "train"
solver.train(**kwargs)
# solver.save("model_epoch_%d.pth" % solver.epoch)
if "test_batch_size" in cfg:
solver.batch_size = cfg.test_batch_size
solver.model.split = "valid"
metric = solver.evaluate("valid")
solver.batch_size = cfg.engine.batch_size
score = []
for k, v in metric.items():
if k.startswith(cfg.eval_metric):
if "root mean squared error" in cfg.eval_metric:
score.append(-v)
else:
score.append(v)
score = sum(score) / len(score)
if score > best_score:
best_score = score
best_epoch = solver.epoch
# solver.load("model_epoch_%d.pth" % best_epoch)
# return solver, best_epoch
def test(cfg, solver):
if "test_batch_size" in cfg:
solver.batch_size = cfg.test_batch_size
solver.model.split = "valid"
solver.evaluate("valid")
solver.model.split = "test"
solver.evaluate("test")
return
@hydra.main(version_base=None, config_path="configs/benchmark", config_name="beta")
def main(cfg: DictConfig) -> None:
cfg = resolve_cfg(cfg)
set_seed(0) # TODO: run with more seeds
output_dir = create_working_directory(cfg)
logger = get_root_logger()
os.chdir(output_dir)
solver = build_solver(cfg, logger)
train_and_validate(cfg, solver)
# if comm.get_rank() == 0:
# logger.warning("Best epoch on valid: %d" % best_epoch)
# test(cfg, solver)
if __name__ == "__main__":
main()