forked from paulh002/sdrberry
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAMDemodulator.cpp
192 lines (169 loc) · 4.98 KB
/
AMDemodulator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include "sdrberry.h"
#include "AMDemodulator.h"
#include <thread>
static shared_ptr<AMDemodulator> sp_amdemod;
AMDemodulator::AMDemodulator(int mode, double ifrate, int pcmrate, DataBuffer<IQSample> *source_buffer, AudioOutput *audio_output)
: Demodulator(ifrate, pcmrate, source_buffer, audio_output)
{
float mod_index = 0.03125f;
int suppressed_carrier;
liquid_ampmodem_type am_mode;
Demodulator::set_reample_rate(pcmrate / ifrate); // down sample to pcmrate
switch (mode)
{
case mode_cw:
case mode_usb:
m_bandwidth = 2500; // SSB
suppressed_carrier = 1;
am_mode = LIQUID_AMPMODEM_USB;
printf("mode LIQUID_AMPMODEM_USB carrier %d\n", suppressed_carrier);
break;
case mode_lsb:
m_bandwidth = 2500; // SSB
suppressed_carrier = 1;
am_mode = LIQUID_AMPMODEM_LSB;
printf("mode LIQUID_AMPMODEM_LSB carrier %d\n", suppressed_carrier);
break;
case mode_am:
m_bandwidth = 5000; // SSB
suppressed_carrier = 0;
am_mode = LIQUID_AMPMODEM_DSB;
printf("mode LIQUID_AMPMODEM_DSB carrier %d\n", suppressed_carrier);
break;
case mode_dsb:
m_bandwidth = 5000; // SSB
suppressed_carrier = 1;
am_mode = LIQUID_AMPMODEM_DSB;
printf("mode LIQUID_AMPMODEM_DSB carrier %d\n", suppressed_carrier);
break;
default:
printf("Mode not correct\n");
return;
}
m_fcutoff = m_bandwidth;
Demodulator::set_filter(m_pcmrate, m_bandwidth);
m_demod = ampmodem_create(mod_index, am_mode, suppressed_carrier);
gbar.set_filter_slider(m_bandwidth);
//catinterface.SetSH(m_bandwidth);
//agc.set_bandwidth(0.01f);
//agc.set_enery_levels(0.1f, 1.0f);
//agc.print();
}
AMDemodulator::~AMDemodulator()
{
printf("AM destructor called \n");
if (m_demod != nullptr)
{
ampmodem_destroy(m_demod);
m_demod = nullptr;
}
}
void AMDemodulator::operator()()
{
const auto startTime = std::chrono::high_resolution_clock::now();
auto timeLastPrint = std::chrono::high_resolution_clock::now();
int ifilter {-1}, span;
SampleVector audiosamples, audioframes;
Fft_calc.plan_fft(nfft_samples);
while (!stop_flag.load())
{
span = gsetup.get_span();
if (vfo.tune_flag.load() || m_span != span)
{
vfo.tune_flag = false;
tune_offset(vfo.get_vfo_offset());
set_span(span);
}
if (ifilter != m_fcutoff.load())
{
ifilter = m_fcutoff.load();
printf("set filter %d\n", ifilter);
set_filter(m_pcmrate, ifilter);
}
if (m_source_buffer->queued_samples() == 0)
{
usleep(5000);
continue;
}
IQSampleVector iqsamples = m_source_buffer->pull();
if (iqsamples.empty())
{
usleep(5000);
continue;
}
perform_fft(iqsamples);
Fft_calc.set_signal_strength(get_if_level());
process(iqsamples, audiosamples);
samples_mean_rms(audiosamples, m_audio_mean, m_audio_rms);
m_audio_level = 0.95 * m_audio_level + 0.05 * m_audio_rms;
// Set nominal audio volume.
audio_output->adjust_gain(audiosamples);
for (auto& col : audiosamples)
{
// split the stream in blocks of samples of the size framesize
audioframes.insert(audioframes.end(), col);
if (audioframes.size() == (2 * audio_output->get_framesize()))
{
if ((audio_output->queued_samples() / 2) < 2048)
audio_output->write(audioframes);
else
{
//printf("drop frames\n");
audioframes.clear();
}
}
}
iqsamples.clear();
audiosamples.clear();
const auto now = std::chrono::high_resolution_clock::now();
if (timeLastPrint + std::chrono::seconds(1) < now)
{
timeLastPrint = now;
const auto timePassed = std::chrono::duration_cast<std::chrono::microseconds>(now - startTime);
//printf("RX Samplerate %g Audio Sample Rate Msps %g Bps %f Queued Audio Samples %d\n", get_rxsamplerate() * 1000000.0, (float)get_audio_sample_rate(), get_audio_sample_rate() / (get_rxsamplerate() * 1000000.0), audio_output->queued_samples()/2);
}
}
}
void AMDemodulator::process(const IQSampleVector& samples_in, SampleVector& audio)
{
IQSampleVector filter1, filter2;
SampleVector audio_mono;
// mix to correct frequency
mix_down(samples_in, filter1);
Resample(filter1, filter2);
filter1.clear();
filter(filter2, filter1);
filter2.clear();
calc_if_level(filter1);
for (auto col : filter1)
{
float v;
ampmodem_demodulate(m_demod, (liquid_float_complex)col, &v);
audio_mono.push_back(v);
}
filter1.clear();
filter2.clear();
mono_to_left_right(audio_mono, audio);
audio_mono.clear();
}
bool AMDemodulator::create_demodulator(int mode, double ifrate, int pcmrate, DataBuffer<IQSample> *source_buffer, AudioOutput *audio_output)
{
if (sp_amdemod != nullptr)
return false;
sp_amdemod = make_shared<AMDemodulator>(mode, ifrate, pcmrate, source_buffer, audio_output);
sp_amdemod->amdemod_thread = std::thread(&AMDemodulator::operator(), sp_amdemod);
return true;
}
void AMDemodulator::destroy_demodulator()
{
if (sp_amdemod == nullptr)
return;
sp_amdemod->stop_flag = true;
sp_amdemod->amdemod_thread.join();
sp_amdemod.reset();
}
void select_filter(int ifilter)
{
if (sp_amdemod)
sp_amdemod->set_filter(ifilter);
}