-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbandit.py
51 lines (47 loc) · 1.33 KB
/
bandit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
class Bandit():
#
arms_mu = []
totalReward = 0
totalRegret = 0
time = 0
best_mu = 0
rewards = []
regrets = []
#
def __init__(self,time_horizon,number_of_arms,agent):
self.time_horizon = time_horizon
self.number_of_arms = number_of_arms
self.agent = agent
self.initEnviroment()
#
def initEnviroment(self):
for i in range(self.number_of_arms):
self.arms_mu.append(i+1)
self.best_mu = self.number_of_arms
#
def reset(self):
self.totalReward = 0
self.totalRegret = 0
self.time = 0
self.rewards = []
self.regrets = []
self.agent.reset()
#
def createArm(self,sample_name,mu):
return
#
def step(self):
choosed_arm = self.agent.decide(self.time,self.time_horizon,self.number_of_arms)
reward = np.random.normal(self.arms_mu[choosed_arm],1)
self.agent.observe(self.time,choosed_arm,reward)
self.rewards.append(reward+self.totalReward)
self.totalReward += reward
regret = self.best_mu - reward
self.regrets.append(regret+self.totalRegret)
self.totalRegret += regret
#
def simulate(self):
for t in range(self.time_horizon):
self.time = t
self.step()