Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Support SProd and CompositeOp for expval #275

Merged
merged 6 commits into from
Sep 6, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
packages=find_namespace_packages(where="src", exclude=("test",)),
package_dir={"": "src"},
install_requires=[
"amazon-braket-sdk>=1.47.0",
"amazon-braket-sdk>=1.87.0",
"autoray>=0.6.11",
"pennylane>=0.34.0",
],
Expand Down
14 changes: 7 additions & 7 deletions src/braket/pennylane_plugin/braket_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ def operations(self) -> frozenset[str]:
@property
def observables(self) -> frozenset[str]:
base_observables = frozenset(super().observables)
# Amazon Braket only supports coefficients and multiple terms when shots==0
# Amazon Braket only supports scalar multiplication and addition when shots==0
if not self.shots:
return base_observables.union({"Hamiltonian", "LinearCombination"})
return base_observables
Expand Down Expand Up @@ -254,9 +254,8 @@ def _pl_to_braket_circuit(
braket_circuit = self._apply_gradient_result_type(circuit, braket_circuit)
elif not isinstance(circuit.measurements[0], MeasurementTransform):
for measurement in circuit.measurements:
dev_wires = self.map_wires(measurement.wires).tolist()
translated = translate_result_type(
measurement, dev_wires, self._braket_result_types
measurement.map_wires(self.wire_map), None, self._braket_result_types
)
if isinstance(translated, tuple):
for result_type in translated:
Expand All @@ -281,7 +280,7 @@ def _apply_gradient_result_type(self, circuit, braket_circuit):
f"Braket can only compute gradients for circuits with a single expectation"
f" observable, not a {pl_measurements.return_type} observable."
)
if isinstance(pl_observable, (Hamiltonian, qml.Hamiltonian, Sum)):
if isinstance(pl_observable, (Hamiltonian, Sum)):
targets = [self.map_wires(op.wires) for op in pl_observable.terms()[1]]
else:
targets = self.map_wires(pl_observable.wires).tolist()
Expand Down Expand Up @@ -544,9 +543,10 @@ def _run_task(self, circuit, inputs=None):
def _run_snapshots(self, snapshot_circuits, n_qubits, mapped_wires):
raise NotImplementedError("Need to implement snapshots runner")

def _get_statistic(self, braket_result, observable):
dev_wires = self.map_wires(observable.wires).tolist()
return translate_result(braket_result, observable, dev_wires, self._braket_result_types)
def _get_statistic(self, braket_result, mp):
return translate_result(
braket_result, mp.map_wires(self.wire_map), None, self._braket_result_types
)

@staticmethod
def _get_trainable_parameters(tape: QuantumTape) -> dict[int, numbers.Number]:
Expand Down
102 changes: 51 additions & 51 deletions src/braket/pennylane_plugin/translation.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,6 @@
from pennylane import numpy as np
from pennylane.measurements import MeasurementProcess, ObservableReturnTypes
from pennylane.operation import Observable, Operation
from pennylane.ops import Adjoint, Hamiltonian
from pennylane.pulse import ParametrizedEvolution

from braket.pennylane_plugin.ops import (
Expand Down Expand Up @@ -434,7 +433,7 @@ def _(ms: AAMS, parameters, device=None):


@_translate_operation.register
def _(adjoint: Adjoint, parameters, device=None):
def _(adjoint: qml.ops.Adjoint, parameters, device=None):
if isinstance(adjoint.base, qml.ISWAP):
# gates.ISwap.adjoint() returns a different value
return gates.PSwap(3 * np.pi / 2)
Expand Down Expand Up @@ -523,23 +522,25 @@ def get_adjoint_gradient_result_type(
):
if "AdjointGradient" not in supported_result_types:
raise NotImplementedError("Unsupported return type: AdjointGradient")
braket_observable = _translate_observable(observable)

braket_observable = _translate_observable(_flatten_observable(observable))
braket_observable = (
braket_observable.item() if hasattr(braket_observable, "item") else braket_observable
)
return AdjointGradient(observable=braket_observable, target=targets, parameters=parameters)


def translate_result_type( # noqa: C901
measurement: MeasurementProcess, targets: list[int], supported_result_types: frozenset[str]
measurement: MeasurementProcess,
targets: Optional[list[int]],
supported_result_types: frozenset[str],
) -> Union[ResultType, tuple[ResultType, ...]]:
"""Translates a PennyLane ``MeasurementProcess`` into the corresponding Braket ``ResultType``.

Args:
measurement (MeasurementProcess): The PennyLane ``MeasurementProcess`` to translate
targets (list[int]): The target wires of the observable using a consecutive integer wire
ordering
targets (Optional[list[int]]): The target wires of the observable using a consecutive
integer wire ordering
supported_result_types (frozenset[str]): Braket result types supported by the Braket device

Returns:
Expand All @@ -548,7 +549,9 @@ def translate_result_type( # noqa: C901
then this will return a result type for each term.
"""
return_type = measurement.return_type
targets = targets or measurement.wires.tolist()
observable = measurement.obs
print(observable)

if return_type is ObservableReturnTypes.Probability:
return Probability(targets)
Expand All @@ -560,93 +563,88 @@ def translate_result_type( # noqa: C901
return DensityMatrix(targets)
raise NotImplementedError(f"Unsupported return type: {return_type}")

if isinstance(observable, (Hamiltonian, qml.Hamiltonian)):
if return_type is ObservableReturnTypes.Expectation:
return tuple(
Expectation(_translate_observable(term), term.wires) for term in observable.ops
)
raise NotImplementedError(f"Return type {return_type} unsupported for Hamiltonian")

if observable is None:
if return_type is ObservableReturnTypes.Counts:
return tuple(Sample(observables.Z(), target) for target in targets or measurement.wires)
return tuple(Sample(observables.Z(target)) for target in targets or measurement.wires)
raise NotImplementedError(f"Unsupported return type: {return_type}")

observable = _flatten_observable(observable)

if isinstance(observable, qml.ops.LinearCombination):
if return_type is ObservableReturnTypes.Expectation:
return tuple(Expectation(_translate_observable(op)) for op in observable.terms()[1])
raise NotImplementedError(f"Return type {return_type} unsupported for Hamiltonian")

braket_observable = _translate_observable(observable)
if return_type is ObservableReturnTypes.Expectation:
return Expectation(braket_observable, targets)
return Expectation(braket_observable)
elif return_type is ObservableReturnTypes.Variance:
return Variance(braket_observable, targets)
return Variance(braket_observable)
elif return_type in (ObservableReturnTypes.Sample, ObservableReturnTypes.Counts):
return Sample(braket_observable, targets)
return Sample(braket_observable)
else:
raise NotImplementedError(f"Unsupported return type: {return_type}")


def _flatten_observable(observable):
if isinstance(observable, (qml.ops.Hamiltonian, qml.ops.CompositeOp, qml.ops.SProd)):
simplified = qml.ops.LinearCombination(*observable.terms()).simplify()
coeffs, _ = simplified.terms()
if len(coeffs) > 1 or coeffs[0] != 1:
return simplified
return observable


@singledispatch
def _translate_observable(observable):
raise qml.DeviceError(f"Unsupported observable: {type(observable)}")


@_translate_observable.register(Hamiltonian)
@_translate_observable.register(qml.Hamiltonian)
def _(H: Union[Hamiltonian, qml.Hamiltonian]):
# terms is structured like [C, O] where C is a tuple of all the coefficients, and O is
# a tuple of all the corresponding observable terms (X, Y, Z, H, etc or a tensor product
# of them)
coefficents, pl_observables = H.terms()
braket_observables = list(map(lambda obs: _translate_observable(obs), pl_observables))
braket_hamiltonian = sum(
(coef * obs for coef, obs in zip(coefficents[1:], braket_observables[1:])),
coefficents[0] * braket_observables[0],
)
return braket_hamiltonian


@_translate_observable.register
def _(_: qml.PauliX):
return observables.X()
def _(obs: qml.PauliX):
return observables.X(obs.wires[0])


@_translate_observable.register
def _(_: qml.PauliY):
return observables.Y()
def _(obs: qml.PauliY):
return observables.Y(obs.wires[0])


@_translate_observable.register
def _(_: qml.PauliZ):
return observables.Z()
def _(obs: qml.PauliZ):
return observables.Z(obs.wires[0])


@_translate_observable.register
def _(_: qml.Hadamard):
return observables.H()
def _(obs: qml.Hadamard):
return observables.H(obs.wires[0])


@_translate_observable.register
def _(_: qml.Identity):
return observables.I()
def _(obs: qml.Identity):
return observables.I(obs.wires[0])


@_translate_observable.register
def _(h: qml.Hermitian):
return observables.Hermitian(qml.matrix(h))
def _(obs: qml.Hermitian):
return observables.Hermitian(qml.matrix(obs), targets=obs.wires)


_zero = np.array([[1, 0], [0, 0]])
_one = np.array([[0, 0], [0, 1]])


@_translate_observable.register
def _(p: qml.Projector):
state, wires = p.parameters[0], p.wires
def _(obs: qml.Projector):
state = obs.parameters[0]
wires = obs.wires
if len(state) == len(wires): # state is a basis state
products = [_one if b else _zero for b in state]
hermitians = [observables.Hermitian(p) for p in products]
hermitians = [observables.Hermitian(p, targets=[w]) for p, w in zip(products, wires)]
return observables.TensorProduct(hermitians)

# state is a state vector
return observables.Hermitian(p.matrix())
return observables.Hermitian(obs.matrix(), targets=wires)


@_translate_observable.register
Expand All @@ -672,7 +670,7 @@ def _(t: qml.ops.Sum):
def translate_result(
braket_result: GateModelQuantumTaskResult,
measurement: MeasurementProcess,
targets: list[int],
targets: Optional[list[int]],
supported_result_types: frozenset[str],
) -> Any:
"""Translates a Braket result into the corresponding PennyLane return type value.
Expand All @@ -681,7 +679,7 @@ def translate_result(
braket_result (GateModelQuantumTaskResult): The Braket result to translate.
measurement (MeasurementProcess): The PennyLane measurement process associated with the
result.
targets (list[int]): The qubits in the result.
targets (Optional[list[int]]): The qubits in the result.
supported_result_types (frozenset[str]): The result types supported by the device.

Returns:
Expand All @@ -706,6 +704,7 @@ def translate_result(
for i in sorted(key_indices)
]

targets = targets or measurement.wires.tolist()
if measurement.return_type is ObservableReturnTypes.Counts and observable is None:
if targets:
new_dict = {}
Expand All @@ -719,7 +718,8 @@ def translate_result(
return dict(braket_result.measurement_counts)

translated = translate_result_type(measurement, targets, supported_result_types)
if isinstance(observable, (Hamiltonian, qml.Hamiltonian)):
observable = _flatten_observable(observable)
if isinstance(observable, qml.ops.LinearCombination):
coeffs, _ = observable.terms()
return sum(
coeff * braket_result.get_value_by_result_type(result_type)
Expand Down
Loading
Loading