-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathellipsoid_fit.py
145 lines (115 loc) · 4.75 KB
/
ellipsoid_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import math
def data_regularize(data, type="spheric", divs = 10):
limits = np.array([
[min(data[:,0]), max(data[:,0])],
[min(data[:,1]), max(data[:,1])],
[min(data[:,2]), max(data[:,2])]])
regularized = []
if type=="cubic":
X = np.linspace(*limits[0], num = divs)
Y = np.linspace(*limits[1], num = divs)
Z = np.linspace(*limits[2], num = divs)
for i in range(divs-1):
for j in range(divs-1):
for k in range(divs-1):
points_in_sector = []
for point in data:
if (point[0] >= X[i] and point[0] < X[i+1] and
point[1] >= Y[j] and point[1] < Y[j+1] and
point[2] >= Z[k] and point[2] < Z[k+1]) :
points_in_sector.append(point)
if len(points_in_sector) > 0:
regularized.append(np.mean(np.array(points_in_sector), axis=0))
elif type=="spheric" :
divs_u = divs
divs_v = divs * 2
center = np.array([
0.5 * (limits[0,0] + limits[0,1]),
0.5 * (limits[1,0] + limits[1,1]),
0.5 * (limits[2,0] + limits[2,1])])
d_c = data - center
#spherical coordinates around center
r_s = np.sqrt(d_c[:,0]**2. + d_c[:,1]**2. + d_c[:,2]**2.)
d_s = np.array([
r_s,
np.arccos(d_c[:,2] / r_s),
np.arctan2(d_c[:,1], d_c[:,0])]).T
u = np.linspace(0, np.pi, num = divs_u)
v = np.linspace(-np.pi, np.pi, num = divs_v)
for i in range(divs_u - 1):
for j in range(divs_v - 1):
points_in_sector = []
for k , point in enumerate(d_s):
if (point[1] >= u[i] and point[1] < u[i+1] and
point[2] >= v[j] and point[2] < v[j+1]) :
points_in_sector.append(data[k])
if len(points_in_sector) > 0:
regularized.append(np.mean(np.array(points_in_sector), axis=0))
### Other strategy of finding mean values in sectors
## p_sec = np.array(points_in_sector)
## R = np.mean(p_sec[:,0])
## U = (u[i] + u[i+1])*0.5
## V = (v[j] + v[j+1])*0.5
## x = R*math.sin(U)*math.cos(V)
## y = R*math.sin(U)*math.sin(V)
## z = R*math.cos(U)
## regularized.append(center + np.array([x,y,z]))
return np.array(regularized)
# https://github.com/minillinim/ellipsoid
def ellipsoid_plot(center, radii, rotation, ax, plotAxes=False, cageColor='b', cageAlpha=0.2):
"""Plot an ellipsoid"""
u = np.linspace(0.0, 2.0 * np.pi, 100)
v = np.linspace(0.0, np.pi, 100)
# cartesian coordinates that correspond to the spherical angles:
x = radii[0] * np.outer(np.cos(u), np.sin(v))
y = radii[1] * np.outer(np.sin(u), np.sin(v))
z = radii[2] * np.outer(np.ones_like(u), np.cos(v))
# rotate accordingly
for i in range(len(x)):
for j in range(len(x)):
[x[i,j],y[i,j],z[i,j]] = np.dot([x[i,j],y[i,j],z[i,j]], rotation) + center
if plotAxes:
# make some purdy axes
axes = np.array([[radii[0],0.0,0.0],
[0.0,radii[1],0.0],
[0.0,0.0,radii[2]]])
# rotate accordingly
for i in range(len(axes)):
axes[i] = np.dot(axes[i], rotation)
# plot axes
for p in axes:
X3 = np.linspace(-p[0], p[0], 100) + center[0]
Y3 = np.linspace(-p[1], p[1], 100) + center[1]
Z3 = np.linspace(-p[2], p[2], 100) + center[2]
ax.plot(X3, Y3, Z3, color=cageColor)
# plot ellipsoid
ax.plot_wireframe(x, y, z, rstride=4, cstride=4, color=cageColor, alpha=cageAlpha)
# http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
# for arbitrary axes
def ellipsoid_fit(X):
x=X[:,0]
y=X[:,1]
z=X[:,2]
D = np.array([x*x,
y*y,
z*z,
2 * x*y,
2 * x*z,
2 * y*z,
2 * x,
2 * y,
2 * z])
DT = D.conj().T
v = np.linalg.solve( D.dot(DT), D.dot( np.ones( np.size(x) ) ) )
A = np.array( [[v[0], v[3], v[4], v[6]],
[v[3], v[1], v[5], v[7]],
[v[4], v[5], v[2], v[8]],
[v[6], v[7], v[8], -1]])
center = np.linalg.solve(- A[:3,:3], [[v[6]],[v[7]],[v[8]]])
T = np.eye(4)
T[3,:3] = center.T
R = T.dot(A).dot(T.conj().T)
evals, evecs = np.linalg.eig(R[:3,:3] / -R[3,3])
radii = np.sqrt(1. / evals)
return center, radii, evecs, v