-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathactivations.py
115 lines (78 loc) · 2.22 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
class Activation(object):
"""
Interface for activation functions (non-linearities).
"""
def __init__(self):
self.state = None
def __call__(self, x):
return self.forward(x)
def forward(self, x):
raise NotImplemented
def derivative(self):
raise NotImplemented
class Identity(Activation):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
self.state = x
return x
def derivative(self):
return 1.0
class Sigmoid(Activation):
def __init__(self):
super(Sigmoid, self).__init__()
self.state = None
def forward(self, x):
self.state = 1.0 / (1 + np.exp(-x))
return self.state
def derivative(self):
return self.state * (1 - self.state)
class Tanh(Activation):
def __init__(self):
super(Tanh, self).__init__()
self.state = None
def forward(self, x):
self.state = np.tanh(x)
return self.state
def derivative(self):
return 1.0 - self.state ** 2
class ReLU(Activation):
def __init__(self):
super(ReLU, self).__init__()
self.state = None
self.x = None
def forward(self, x):
self.x = x
self.state = x * (x > 0)
return self.state
def derivative(self):
return np.where(self.state <= 0, 0, 1).astype(float)
class Criterion(object):
"""
Interface for loss functions.
"""
def __init__(self):
self.logits = None
self.labels = None
self.loss = None
def __call__(self, x, y):
return self.forward(x, y)
def forward(self, x, y):
raise NotImplemented
def derivative(self):
raise NotImplemented
class SoftmaxCrossEntropy(Criterion):
def __init__(self):
super(SoftmaxCrossEntropy, self).__init__()
self.sm = None
def forward(self, x, y):
self.logits = x - np.max(x)
self.labels = y
self.sm = (np.exp(self.logits).T / np.sum(np.exp(self.logits), axis=1)).T
ce = -np.log(self.sm) * y
loss = np.sum(ce, axis=1)
return loss
def derivative(self):
grad = self.sm - self.labels
return grad