-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
39 lines (26 loc) · 803 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import mlp
import mnist
import activations as ac
import numpy as np
import time
np.random.seed(11785)
#initialize neural parameters
learning_rate = 0.004
momentum = 0.996 #0.956
num_bn_layers= 1
mini_batch_size = 10
epochs = 40
# initialize training, validation and testing data
train, val, test = mnist.load_mnist()
net = mlp.MLP(784, 10, [64, 32], [ac.Sigmoid(), ac.Sigmoid(), ac.Sigmoid()], ac.SoftmaxCrossEntropy(), learning_rate,
momentum, num_bn_layers)
start = time.time()
#training neural network
net.fit(train, val, epochs, mini_batch_size)
end = time.time()
print("Training time(sec.) =", end-start)
#testing neural network
accuracy = net.validate(test) * 100.0
print("Test Accuracy: " + str(accuracy) + "%")
#save the model
net.save(str(accuracy) + "_acc_nn_model.pkl")