-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
408 lines (339 loc) · 21.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from functools import partial
import argparse
import datetime
import itertools
import math
import os
import pickle
import random
import sys
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data.distributed
from torch.utils.data import TensorDataset
from tqdm import tqdm
import utils
from sklearn.metrics import roc_auc_score
from dataloader import create_train_val_v2, _construct_output_data_alt, load_evaluation_data
from trajectories import assemble_ground_truth_and_reconstructions, load_anomaly_masks, compute_rnn_ae_reconstruction_errors, summarise_reconstruction_errors, discard_information_from_padded_frames
from utils import batch_inference
from models.trajrec import trajrec_tiny, trajrec_small, trajrec_base, trajrec_large, trajrec_huge, TrajREC
import wandb
@torch.no_grad()
def prediction_auc_score(model, data, reconstruct_original_data=True, batch_size=None, setting='future', is_avenue=False):
input_length = model.input_length
pred_length = model.prediction_length
all_y_true, all_y_hat = [], []
all_y_grouped_true, all_y_grouped_hat = {}, {}
for anomaly_masks, trajectories_ids, frames, X_global, X_local, X_out in data:
predicted_frames = frames[:, :pred_length] + input_length
predicted_ids = trajectories_ids[:, :pred_length]
out, target = batch_inference(model, [X_global, X_local, X_out], batch_size=batch_size, setting=setting)
predicted_global, predicted_local, predicted_out = out
X = X_out if reconstruct_original_data else np.concatenate((X_global, X_local), axis=-1)
#y = retrieve_future_skeletons(trajectories_ids, X, pred_length)
y = target[-1]
predicted_y = predicted_out if reconstruct_original_data else np.concatenate((predicted_global, predicted_local), axis=-1)
pred_errors = compute_rnn_ae_reconstruction_errors(y, predicted_y, 'mse')
if setting=='past':
pred_errors = pred_errors[:,:pred_length]
elif setting=='future':
pred_errors = pred_errors[:,input_length:]
else:
pred_errors = pred_errors[:,input_length//2:input_length//2+pred_length]
pred_ids, pred_frames, pred_errors = discard_information_from_padded_frames(predicted_ids, predicted_frames,
pred_errors, pred_length)
pred_ids, pred_frames, pred_errors = summarise_reconstruction_errors(pred_errors, pred_frames, pred_ids)
y_true_pred, y_hat_pred, y_grouped_true, y_grouped_hat = assemble_ground_truth_and_reconstructions(
anomaly_masks, pred_ids, pred_frames, pred_errors, return_grouped_scores=True)
all_y_true.append(y_true_pred)
all_y_hat.append(y_hat_pred)
all_y_grouped_true.update(y_grouped_true)
all_y_grouped_hat.update(y_grouped_hat)
all_y_true = np.concatenate(all_y_true)
all_y_hat = np.concatenate(all_y_hat)
if is_avenue:
with open('data/masked_frames.pkl', 'rb') as f:
AVENUE_MASK = pickle.load(f)
all_y_true = all_y_true[AVENUE_MASK]
all_y_hat = all_y_hat[AVENUE_MASK]
scores = []
sz = len(all_y_hat)
mask = [1 for _ in range(len(all_y_true))]
for i,m in enumerate(mask):
if i in scores:
mask[i] = 0
mask = [m == 1 for m in mask]
return roc_auc_score(all_y_true, all_y_hat), all_y_grouped_true, all_y_grouped_hat
def create_train_val_datasets(args):
x_train, y_train, val_data, train_trajectories, val_trajectories, bb_scaler, joint_scaler, out_scaler = \
create_train_val_v2(trajectories_path=args['trajectories'], video_resolution=args['video_resolution'],
input_length=args['input_length'], pred_length=args['pred_length'])
x_global_train, x_local_train, x_out_train = x_train
x_global_val, x_local_val, x_out_val = val_data[0]
if y_train is not None: # yes
y_global_train, y_local_train, y_out_train = y_train
y_global_val, y_local_val, y_out_val = val_data[1]
else:
y_global_train = y_local_train = y_out_train = y_global_val = y_local_val = y_out_val = None
y = _construct_output_data_alt(True, args['rec_length'], args['reconstruct_reverse'],
args['pred_length'], x_out_train, y_out_train,
x_global_train, y_global_train, x_local_train, y_local_train)
y_val = _construct_output_data_alt(True, args['rec_length'], args['reconstruct_reverse'],
args['pred_length'], x_out_val, y_out_val,
x_global_val, y_global_val, x_local_val, y_local_val)
X = (x_global_train, x_local_train, x_out_train)
X_val = (x_global_val, x_local_val, x_out_val)
train_tensors = [torch.from_numpy(d) for d in itertools.chain(X, (a.copy() for a in y))]
val_tensors = [torch.from_numpy(d) for d in itertools.chain(X_val, (a.copy() for a in y_val))]
return x_local_train.shape[-1], TensorDataset(*train_tensors), TensorDataset(*val_tensors), \
bb_scaler, joint_scaler, out_scaler
def run(args):
print(args)
random.seed(args['seed'])
np.random.seed(args['seed'])
torch.manual_seed(args['seed'])
if 'avenue' in args['trajectories'].lower():
project = "trajectory-anomalies-ave"
elif 'shanghaitech' in args['trajectories'].lower():
project = "trajectory-anomalies-stc"
elif 'ubnormal' in args['trajectories'].lower():
project = "trajectory-anomalies-ubn"
else:
project = "trajectory-anomalies-hrubn"
if args['wandb']:
wandb.init(
settings=wandb.Settings(start_method="fork"),
project=project,
config={
"lr": args['lr'],
"arch": args['model'],
"loss": args['loss'],
"pred_length": args['pred_length'],
"rec_length": args['rec_length'],
"epochs": args['epochs'],
"batch_size": args['batch_size'],
"weight_decay": args['weight_decay'],
"lambda1": args['lambda1'],
"lambda2": args['lambda2'],
"lambda3": args['lambda3'],
}
)
if 'custom' in args['model']:
wandb.log({"embed_dim":args['embed_dim'],
"depth":args['depth'],
"num_heads":args['num_heads'],
"decoder_embed_dim":args['decoder_embed_dim'],
"decoder_depth":args['decoder_depth'],
"decoder_num_heads":args['decoder_num_heads']})
try:
os.makedirs(args['weights'])
except OSError:
print(f' \n directory for the weights already exists. WEIGHTS WILL BE OVERWRITTEN!!! \n')
pass
device = torch.device(args['gpu_id'] if args['gpu_id'] != -1 else "cpu")
local_input_dim,dataset_train,dataset_val,bb_scaler,joint_scaler,out_scaler=create_train_val_datasets(args)
global_input_dim = 4
print(f'Num of skeletons sequences: {len(dataset_train)} train, {len(dataset_val)} val')
res = np.array([int(dim) for dim in args['video_resolution'].split('x')], dtype=np.float32)
data_test = []
for camera_id in sorted(os.listdir(os.path.join(args['testdata'], 'trajectories'))):
tpath = os.path.join(os.path.join(args['testdata'], 'trajectories'), camera_id)
masks = load_anomaly_masks(os.path.join(args['testdata'], 'frame_level_masks', camera_id))
ids, frames, X_bb, X_joints, X_out, _, _, _ = load_evaluation_data(bb_scaler,joint_scaler,out_scaler,tpath,inp_len=args['input_length'],inp_gap=0,pred_len=args['pred_length'],res=res,bb_norm='zero_one',joint_norm='zero_one',out_norm='zero_one', rec_data=True,sort='avenue' in args['testdata'].lower())
data_test.append((masks, ids, frames, X_bb, X_joints, X_out))
train_loader = torch.utils.data.DataLoader(dataset_train, shuffle=True, batch_size=args['batch_size'], num_workers=4, pin_memory=True)
val_loader = torch.utils.data.DataLoader(dataset_val, shuffle=False, batch_size=args['batch_size'], num_workers=4, pin_memory=True)
if 'trajrec' in args['model']:
if 'tiny' in args['model'] :
model = trajrec_tiny(input_length=args['input_length'], global_input_dim=global_input_dim,
local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
elif 'small' in args['model'] :
model = trajrec_small(input_length=args['input_length'], global_input_dim=global_input_dim,
local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
elif 'base' in args['model'] :
model = trajrec_base(input_length=args['input_length'], global_input_dim=global_input_dim,
local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
elif 'large' in args['model'] :
model = trajrec_large(input_length=args['input_length'], global_input_dim=global_input_dim,
local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
elif 'huge' in args['model'] :
model = trajrec_huge(input_length=args['input_length'], global_input_dim=global_input_dim,
local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
elif 'custom' in args['model'] :
model = TrajREC(embed_dim=args['embed_dim'], depth=args['depth'], num_heads=args['num_heads'], decoder_embed_dim=args['decoder_embed_dim'], decoder_depth=args['decoder_depth'], decoder_num_heads=args['decoder_num_heads'], mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6),input_length=args['input_length'], global_input_dim=global_input_dim, local_input_dim=local_input_dim, prediction_length=args['pred_length'], lambdas=[args['lambda1'],args['lambda2'],args['lambda3']])
else:
raise ValueError(f"Invalid model {args['model']}")
model = model.to(device)
print(f"num of parameters - {sum([m.numel() for m in model.parameters()])}")
if args['parallel']:
model = nn.DataParallel(model)
if args['chkp']:
model.load_state_dict(torch.load(args['chkp'], map_location=device)["model"])
print(f"Loaded pretrained weights for the model")
optimizer = optim.Adam(model.parameters(), lr=args['lr'], weight_decay=args['weight_decay'])
scheduler = optim.lr_scheduler. MultiStepLR(optimizer, milestones=[100], gamma=0.5)
logname = 'logs/' + datetime.datetime.now().strftime('%Y%m%d_%Hh%M') if args['logname'] is None else args['logname']
scaler = torch.cuda.amp.GradScaler()
bformat='{l_bar}{bar}| {n_fmt}/{total_fmt} {rate_fmt}{postfix}'
max_AUC = {'past':0., 'present':0., 'future':0.}
for epoch in range(args['epochs']):
if args['eval_only'] and epoch>0:
break
print("Epoch: %02d"%epoch)
stats = {}
if args['eval_only']:
phases = ['val,past', 'val,present', 'val,future']
else:
phases = ['train', 'val,past', 'val,present', 'val,future']
for phase in phases:
loss_meter = utils.AverageMeter()
if phase == 'train':
pbar = tqdm(enumerate(train_loader), total=len(train_loader), bar_format=bformat, ascii='░▒█')
else:
pbar = tqdm(enumerate(val_loader), total=len(val_loader), bar_format=bformat, ascii='░▒█')
with torch.set_grad_enabled(phase == 'train'):
for iteration, (data) in pbar:
if phase=='train':
setting = phase
else:
setting = phase.split(',')[-1]
data_skeleton = [d.to(device, non_blocking=True) for d in data]
inputs_sk, target_sk = data_skeleton[:3], data_skeleton[6:]
inputs_sk = [torch.cat((inputs_sk[0],target_sk[0]),dim=1), torch.cat((inputs_sk[1],target_sk[1]),dim=1), torch.cat((inputs_sk[2],target_sk[2]),dim=1)]
losses,eloss,output,target_sk = model(inputs_sk,setting,compute_loss=True)
if phase=='train':
loss = sum(losses[:-1]) + eloss
else:
loss = losses[-1]
if not math.isfinite(loss):
print("Loss is {}, stopping training".format(loss.item()))
if args['wandb']:
wandb.finish()
return [v[0] for v in stats.values()], [v[1] for v in stats.values()]
loss_meter.update(loss.item(), inputs_sk[0].shape[0])
pbar.set_description(f"[{epoch + 1}/{args['epochs']}]")
pbar.set_postfix_str(f"[{loss_meter.avg:.2e}|{loss.item():.2e}]")
pbar.update()
if phase == 'train':
if args['wandb']:
wandb.log({"train_loss_per_step": loss,
"train_global_loss_per_step": losses[0],
"train_local_loss_per_step": losses[1],
"train_out_loss_per_step": losses[2],
"lr_per_step": optimizer.param_groups[0]["lr"],
})
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
#scheduler.step()
elif args['wandb']:
wandb.log({f"val_{setting}_loss_per_step": loss,
f"val_{setting}_global_loss_per_step": losses[0],
f"val_{setting}_local_loss_per_step": losses[1],
f"val_{setting}_out_loss_per_step": losses[2],
})
# cleanup GPU RAM
del inputs_sk, target_sk, output, loss
if 'val' in phase:
auc_pred, _, _ = prediction_auc_score(model, data_test, reconstruct_original_data=True,
batch_size=args['batch_size'], setting=setting, is_avenue='avenue' in args['trajectories'].lower())
print(f'Test setting {setting}: [MSE: {loss_meter.avg:.6f} | AUC: {auc_pred:.4f}]')
stats[setting] = [loss_meter.avg,auc_pred]
if args['wandb']:
wandb.log({"epoch": epoch,
f"val_{setting}_loss": loss_meter.avg,
f"val_{setting}_AUC": auc_pred
})
elif args['wandb']:
wandb.log({"epoch": epoch,
"train_loss": loss_meter.avg,
"lr": optimizer.param_groups[0]["lr"],
})
sum_mae = sum([v[0] for v in stats.values()])/len(stats)
sum_auc = sum([v[1] for v in stats.values()])/len(stats)
if sum_auc > sum([v for v in max_AUC.values()])/len(max_AUC):
for s in stats.keys():
max_AUC[s] = stats[s][1]
if args['save_best']:
state = {'model_name': args['model'], 'model': model.state_dict(), 'epoch': epoch,
'input_length': model.input_length, 'prediction_length': model.prediction_length,
'bb_scaler': bb_scaler, 'joint_scaler': joint_scaler, 'out_scaler': out_scaler}
torch.save(state, 'best_ckpt.pt')
print(f"AVG : [MSE: {sum_mae:.6f} | AUC: {sum_auc:.4f}]")
if args['wandb']:
wandb.log({f"max_AUC_{setting}": max_AUC[setting] for setting in max_AUC.keys()})
wandb.log({"epoch": epoch,
"val_avg_loss": sum_mae,
"val_avg_AUC": sum_auc
})
scheduler.step()
state = {'model_name': args['model'], 'model': model.state_dict(), 'epoch': epoch,
'input_length': model.input_length, 'prediction_length': model.prediction_length,
'bb_scaler': bb_scaler, 'joint_scaler': joint_scaler, 'out_scaler': out_scaler}
if not os.path.isdir(logname):
os.makedirs(logname)
torch.save(state, f'{logname}/ckpt{epoch}.pt')
if args['wandb']:
wandb.log({f"max_AUC_{setting}": max_AUC[setting] for setting in max_AUC.keys()})
wandb.finish()
return max_AUC
if __name__=='__main__':
model_choices=['trajrec_tiny','trajrec_small','trajrec_base','trajrec_large','trajrec_huge','trajrec_custom']
parser = argparse.ArgumentParser(description='Skeleton based anomaly detection.')
parser.add_argument('--seed', default=0, type=int, help='Randomness seed for reproducible training')
parser.add_argument('--gpu_id', default=0, type=int, help='Which GPUs to use. -1 for cpu')
parser.add_argument('--parallel', default=False, type=lambda x: (str(x).lower() == 'true'), help='Perform dataparallel training.')
parser.add_argument('--trajectories', type=str, required=True,
help='Path to directory containing training trajectories. For each video in the '
'training set, there must be a folder inside this directory containing the '
'trajectories.')
parser.add_argument('--testdata', type=str, required=True,
help='Path to directory containing test trajectories and anomaly masks.')
parser.add_argument('--video_resolution', default='856x480', type=str,
help='Resolution of the trajectories\' original video(s). It should be specified '
'as WxH, where W is the width and H the height of the video.')
parser.add_argument('--model', default='trajrec_tiny', choices=model_choices,
help='Model architecture to use')
parser.add_argument('--embed_dim', default=64, type=int, help='Embedding dimension (encoder)')
parser.add_argument('--depth', default=4, type=int, help='Number of layers (encoder)')
parser.add_argument('--num_heads', default=4, type=int, help='Number of attention heads (encoder)')
parser.add_argument('--decoder_embed_dim', default=64, type=int, help='Embedding dimension (decoder)')
parser.add_argument('--decoder_depth', default=4, type=int, help='Number of layers (decoder)')
parser.add_argument('--decoder_num_heads', default=4, type=int, help='Number of attention heads (decoder)')
parser.add_argument('--cross_layers', default=(1, 3), nargs='*', type=int,
help='Specify which layers must use cross view attention')
parser.add_argument('--fusion', choices=('concat_output', 'concat_features', 'encoder'),
help='Fusion strategy to use in multiview model')
parser.add_argument('--lr', default=1e-4, type=float,
help='Learning rate of the optimiser.')
parser.add_argument('--loss', default='mse', type=str, choices=['log_loss', 'mae', 'mse'],
help='Loss function to be minimised by the optimiser.')
parser.add_argument('--epochs', default=70, type=int, help='Maximum number of epochs for training.')
parser.add_argument('--batch_size', default=512, type=int, help='Mini-batch size for model training.')
parser.add_argument('--weight_decay', default=1e-6, type=float)
parser.add_argument('--lambda1', default=3.0, type=float)
parser.add_argument('--lambda2', default=3.0, type=float)
parser.add_argument('--lambda3', default=5.0, type=float)
parser.add_argument('--input_length', default=12, type=int,
help='Number of input time-steps to encode.')
parser.add_argument('--reconstruct_reverse',type=lambda x: (str(x).lower() == 'true'), default=True,
help='Whether to reconstruct the reverse of the input sequence or not.')
parser.add_argument('--pred_length', default=6, type=int,
help='Number of time-steps to predict into future. Ignored if 0.')
parser.add_argument('--rec_length', default=12, type=int,
help='Number of time-steps to decode from the input sequence.')
parser.add_argument('--weights', type=str, default='weights', help='Path to directory of the model weights.')
parser.add_argument('--logname', default=None,
help='Name for the log directory and saved model (default: current time)')
parser.add_argument('--chkp', type=str, help='Path to the checkpoint for loading the pretrained weights')
parser.add_argument('--setting', type=str, default='future', help='Setting name')
parser.add_argument('--wandb',default=True,type=lambda x: (str(x).lower() == 'true'),help='Bool indicating if to use wandb')
parser.add_argument('--save_best',default=True,type=lambda x: (str(x).lower() == 'true'),help='Bool if to save the checkpoint with best (avg) AUC')
parser.add_argument('--eval_only',default=False,type=lambda x: (str(x).lower() == 'true'),help='Bool if to only run inference.')
_args = parser.parse_args()
_args = vars(_args)
aucs = run(_args)
print(aucs)