-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathanomaly_detection.py
243 lines (213 loc) · 8.05 KB
/
anomaly_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import os
import warnings
import numpy as np
import pandas as pd
import torch
import yaml
from torch.utils.data import DataLoader
import utils.data as od
from utils.anomaly_detection_utils import (
multivariate_anomaly_detection,
univariate_anomaly_detection,
)
warnings.filterwarnings("ignore")
def test_tadgan(
test_loader,
encoder,
decoder,
critic_x,
read_path="",
signal="",
path="",
signal_shape=100,
params=[],
):
# load ground truth anomalies
if params.signal == "multivariate":
known_anomalies = []
elif params.dataset in ["A1", "A2", "A3", "A4"]: # YAHOO dataset
known_anomalies = pd.read_csv(read_path[:-4] + "_known_anomalies.csv")
else:
known_anomalies = od.load_anomalies(params.signal)
recons_signal = []
true_signal = []
critic_score = list()
hyper_real = []
eucl_recons = []
path += "/"
decoder.eval()
encoder.eval()
critic_x.eval()
rec_error_type = params.rec_error
combination = params.combination
# Load saved tensors to avoid recomputing the embeddings
if (
params.load
and (os.path.exists(path + "critic_score.pt"))
and (os.path.exists(path + "recons_signal.pt"))
):
recons_signal = torch.load(path + "recons_signal.pt")
true_signal = torch.load(path + "gt_signal.pt")
critic_score = torch.load(path + "critic_score.pt")
true_index = torch.load(path + "true_index.pt")
else:
"""
TESTING LOOP
"""
for batch, (sample, index, y, y_index, x_index) in enumerate(test_loader):
x = encoder(sample.float().cuda())
if decoder.hyperbolic:
hyper, eucl = decoder(x)
hyper_x = decoder.hyperbolic_linear(
sample.view(-1, signal_shape).float().cuda()
)
if sample.shape[0] == 1:
recons_signal.append(
torch.squeeze(hyper).cpu().detach().numpy().reshape(1, -1)
)
eucl_recons.append(
torch.squeeze(eucl).cpu().detach().numpy().reshape(1, -1)
)
hyper_real.append(
torch.squeeze(hyper_x).cpu().detach().numpy().reshape(1, -1)
)
critic_score.extend(
critic_x(sample.cuda()).cpu().detach().numpy().reshape(-1)
)
else:
recons_signal.append(torch.squeeze(hyper).cpu().detach().numpy())
eucl_recons.append(torch.squeeze(eucl).cpu().detach().numpy())
hyper_real.append(torch.squeeze(hyper_x).cpu().detach().numpy())
critic_score.extend(
torch.squeeze(critic_x(sample.cuda())).cpu().detach().numpy()
)
else:
reconstructed_signal = decoder(x)
if sample.shape[0] == 1:
recons_signal.append(
reconstructed_signal.cpu().detach().numpy().reshape(1, -1)
)
critic_score.extend(
critic_x(sample.cuda()).cpu().detach().numpy().reshape(-1)
)
else:
recons_signal.append(
torch.squeeze(reconstructed_signal).cpu().detach().numpy()
)
critic_score.extend(
torch.squeeze(critic_x(sample.cuda())).cpu().detach().numpy()
)
true_signal.append(sample.numpy())
# save tensors for visualizations and post-processing
recons_signal = np.concatenate(recons_signal)
gt_signal = np.concatenate(true_signal)
torch.save(recons_signal, path + "recons_signal.pt")
torch.save(gt_signal, path + "gt_signal.pt")
true_signal = np.concatenate(true_signal)
torch.save(critic_score, path + "critic_score.pt")
try:
torch.save(index[0], path + "true_index.pt") # type: ignore
except:
pass
if decoder.hyperbolic:
true_signal = np.concatenate(hyper_real)
eucl_recons = np.concatenate(eucl_recons)
torch.save(eucl_recons, path + "eucl_recons.pt")
torch.save(true_signal, path + "real_hyper.pt")
if not params.signal == "multivariate":
x_index = index[0] # type: ignore
true_index = x_index
if params.signal == "multivariate":
multivariate_anomaly_detection(
recons_signal, true_signal, params, combination, critic_score, path
)
else:
univariate_anomaly_detection(
recons_signal,
true_signal,
params,
combination,
critic_score,
path,
read_path,
rec_error_type,
true_index,
known_anomalies,
signal,
signal_shape,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="HypAD")
parser.add_argument(
"-c",
"--config",
type=str,
required=True,
default="/your_default_config_file_path",
)
params = parser.parse_args()
config_path = params.config
params = yaml.load(open(params.config), Loader=yaml.FullLoader)
params = argparse.Namespace(**params)
print("dataset: {}, signal: {}".format(params.dataset, params.signal))
train_dataset, test_dataset, read_path = od.dataset_selection(params)
batch_size = params.batch_size
test_loader = DataLoader(test_dataset, batch_size=batch_size, drop_last=False, shuffle=False, num_workers=6) # type: ignore
dataset = params.dataset
if params.hyperbolic:
if params.signal == "multivariate":
PATH = f"./trained_models/models_hyper_{params.dataset}_{str(params.epochs)}_{str(params.lr)}/{params.dataset}"
else:
PATH = f"./trained_models/models_hyper_{params.dataset}_{str(params.epochs)}_{str(params.lr)}/{params.dataset}/{params.signal}"
else:
if params.signal == "multivariate":
PATH = f"./trained_models/models_eucl_{params.dataset}_{str(params.epochs)}_{str(params.lr)}/{params.dataset}"
else:
PATH = f"./trained_models/models_eucl_{params.dataset}_{str(params.epochs)}_{str(params.lr)}/{params.dataset}/{params.signal}"
if (params.dataset in ["CASAS", "ELINUS", "eHealth"]) and (not params.new_features):
PATH += "_id{}/".format(params.id)
if not os.path.isdir(PATH):
os.makedirs(PATH)
if params.dataset in ["CASAS", "ELINUS", "eHealth"]:
if not params.hyperbolic:
load_path = "./trained_models/models_eucl_{}_{}_{}/BedDuration".format(
dataset, str(params.epochs), str(params.lr)
)
else:
load_path = "./trained_models/models_{}_{}_{}/BedDuration".format(
dataset, str(params.epochs), str(params.lr)
)
else:
load_path = PATH
if params.resume:
# if needed to test a specific epoch
print("resuming epoch: {}".format(params.resume_epoch))
encoder = torch.load(
load_path + "/encoder_{}.pt".format(params.resume_epoch)
).cuda()
decoder = torch.load(
load_path + "/decoder_{}.pt".format(params.resume_epoch)
).cuda()
critic_x = torch.load(
load_path + "/critic_x_{}.pt".format(params.resume_epoch)
).cuda()
else:
# loading the last epoch
encoder = torch.load(load_path + "/encoder.pt").cuda()
decoder = torch.load(load_path + "/decoder.pt").cuda()
critic_x = torch.load(load_path + "/critic_x.pt").cuda()
encoder.eval()
decoder.eval()
critic_x.eval()
test_tadgan(
test_loader,
encoder,
decoder,
critic_x,
read_path=read_path,
signal=params.signal,
path=PATH,
signal_shape=params.signal_shape,
params=params,
)