-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoxplot_price_outliers.twb
914 lines (913 loc) · 62.6 KB
/
Boxplot_price_outliers.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20203.20.0801.1333 -->
<workbook original-version='18.1' source-build='2020.3.0 (20203.20.0801.1333)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<_.fcp.MarkAnimation.true...MarkAnimation />
<_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy />
<_.fcp.ObjectModelTableType.true...ObjectModelTableType />
<_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel />
<SheetIdentifierTracking />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='First_output' inline='true' name='federated.0fsy9he1g2vwcc1dirabf06ncki7' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='First_output' name='textscan.0wipquw1wzt3lc12h7xr61e90b61'>
<connection class='textscan' directory='/Users/kevin/Desktop/TBS/M2/UE 5 - Data Management/Tableau - Dieudonné Tchuente/Project/projet' filename='First_output_outliers boxplot.csv' password='' server='' />
</named-connection>
</named-connections>
<_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.0wipquw1wzt3lc12h7xr61e90b61' name='First_output_outliers boxplot.csv' table='[First_output_outliers boxplot#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='fr_FR' separator=';'>
<column datatype='string' name='Table Names' ordinal='0' />
<column datatype='integer' name='Land Area' ordinal='1' />
<column datatype='integer' name='number of order' ordinal='2' />
<column datatype='real' name='Price per m2' ordinal='3' />
<column datatype='string' name='City' ordinal='4' />
<column datatype='date' name='Sale Date' ordinal='5' />
<column datatype='string' name='Sale Type' ordinal='6' />
<column datatype='real' name='Price' ordinal='7' />
<column datatype='integer' name='Postal Code' ordinal='8' />
<column datatype='string' name='Address' ordinal='9' />
<column datatype='integer' name='Number of lots' ordinal='10' />
<column datatype='string' name='Local Type' ordinal='11' />
<column datatype='integer' name='Living Area' ordinal='12' />
<column datatype='integer' name='Rooms' ordinal='13' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.false...relation>
<_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.0wipquw1wzt3lc12h7xr61e90b61' name='First_output_outliers boxplot.csv' table='[First_output_outliers boxplot#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='fr_FR' separator=';'>
<column datatype='string' name='Table Names' ordinal='0' />
<column datatype='integer' name='Land Area' ordinal='1' />
<column datatype='integer' name='number of order' ordinal='2' />
<column datatype='real' name='Price per m2' ordinal='3' />
<column datatype='string' name='City' ordinal='4' />
<column datatype='date' name='Sale Date' ordinal='5' />
<column datatype='string' name='Sale Type' ordinal='6' />
<column datatype='real' name='Price' ordinal='7' />
<column datatype='integer' name='Postal Code' ordinal='8' />
<column datatype='string' name='Address' ordinal='9' />
<column datatype='integer' name='Number of lots' ordinal='10' />
<column datatype='string' name='Local Type' ordinal='11' />
<column datatype='integer' name='Living Area' ordinal='12' />
<column datatype='integer' name='Rooms' ordinal='13' />
</columns>
</_.fcp.ObjectModelEncapsulateLegacy.true...relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"fr_FR"</attribute>
<attribute datatype='string' name='currency'>"€"</attribute>
<attribute datatype='string' name='debit-close-char'>""</attribute>
<attribute datatype='string' name='debit-open-char'>""</attribute>
<attribute datatype='string' name='decimal-char'>","</attribute>
<attribute datatype='string' name='field-delimiter'>";"</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"fr_FR"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
<attribute datatype='string' name='thousands-char'>" "</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Table Names</remote-name>
<remote-type>129</remote-type>
<local-name>[Table Names]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Table Names</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LFR_RFR' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Land Area</remote-name>
<remote-type>20</remote-type>
<local-name>[Land Area]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Land Area</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>number of order</remote-name>
<remote-type>20</remote-type>
<local-name>[number of order]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>number of order</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Price per m2</remote-name>
<remote-type>5</remote-type>
<local-name>[Price per m2]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Price per m2</remote-alias>
<ordinal>3</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>City</remote-name>
<remote-type>129</remote-type>
<local-name>[City]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>City</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LFR_RFR' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Sale Date</remote-name>
<remote-type>133</remote-type>
<local-name>[Sale Date]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Sale Date</remote-alias>
<ordinal>5</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Sale Type</remote-name>
<remote-type>129</remote-type>
<local-name>[Sale Type]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Sale Type</remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LFR_RFR' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Price</remote-name>
<remote-type>5</remote-type>
<local-name>[Price]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Price</remote-alias>
<ordinal>7</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Postal Code</remote-name>
<remote-type>20</remote-type>
<local-name>[Postal Code]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Postal Code</remote-alias>
<ordinal>8</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Address</remote-name>
<remote-type>129</remote-type>
<local-name>[Address]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Address</remote-alias>
<ordinal>9</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LFR_RFR' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Number of lots</remote-name>
<remote-type>20</remote-type>
<local-name>[Number of lots]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Number of lots</remote-alias>
<ordinal>10</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Local Type</remote-name>
<remote-type>129</remote-type>
<local-name>[Local Type]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Local Type</remote-alias>
<ordinal>11</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LFR_RFR' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Living Area</remote-name>
<remote-type>20</remote-type>
<local-name>[Living Area]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Living Area</remote-alias>
<ordinal>12</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
<metadata-record class='column'>
<remote-name>Rooms</remote-name>
<remote-type>20</remote-type>
<local-name>[Rooms]</local-name>
<parent-name>[First_output_outliers boxplot.csv]</parent-name>
<remote-alias>Rooms</remote-alias>
<ordinal>13</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]</_.fcp.ObjectModelEncapsulateLegacy.true...object-id>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='City1' datatype='string' name='[City]' role='dimension' semantic-role='[City].[Name]' type='nominal' />
<column aggregation='Sum' datatype='integer' default-format='*00000' name='[Postal Code]' role='dimension' semantic-role='[ZipCode].[Name]' type='ordinal' />
<column aggregation='None' datatype='integer' name='[Price (bin)]' role='dimension' type='quantitative'>
<calculation class='bin' decimals='7' formula='[Price]' peg='0' size='1.6486e+07' />
</column>
<column datatype='real' name='[Price]' role='measure' type='quantitative' />
<_.fcp.ObjectModelTableType.true...column caption='First_output_outliers boxplot.csv' datatype='table' name='[__tableau_internal_object_id__].[First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21]' role='measure' type='quantitative' />
<column caption='Number Of Order' datatype='integer' name='[number of order]' role='measure' type='quantitative' />
<layout _.fcp.SchemaViewerObjectModel.false...dim-percentage='0.5' _.fcp.SchemaViewerObjectModel.false...measure-percentage='0.4' dim-ordering='alphabetic' measure-ordering='alphabetic' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"France"' />
</semantic-values>
<date-options start-of-week='monday' />
<_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
<objects>
<object caption='First_output_outliers boxplot.csv' id='First_output_outliers boxplot.csv_DC0BF8540FCA43F6B7706B7161078E21'>
<properties context=''>
<relation connection='textscan.0wipquw1wzt3lc12h7xr61e90b61' name='First_output_outliers boxplot.csv' table='[First_output_outliers boxplot#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='fr_FR' separator=';'>
<column datatype='string' name='Table Names' ordinal='0' />
<column datatype='integer' name='Land Area' ordinal='1' />
<column datatype='integer' name='number of order' ordinal='2' />
<column datatype='real' name='Price per m2' ordinal='3' />
<column datatype='string' name='City' ordinal='4' />
<column datatype='date' name='Sale Date' ordinal='5' />
<column datatype='string' name='Sale Type' ordinal='6' />
<column datatype='real' name='Price' ordinal='7' />
<column datatype='integer' name='Postal Code' ordinal='8' />
<column datatype='string' name='Address' ordinal='9' />
<column datatype='integer' name='Number of lots' ordinal='10' />
<column datatype='string' name='Local Type' ordinal='11' />
<column datatype='integer' name='Living Area' ordinal='12' />
<column datatype='integer' name='Rooms' ordinal='13' />
</columns>
</relation>
</properties>
</object>
</objects>
</_.fcp.ObjectModelEncapsulateLegacy.true...object-graph>
</datasource>
</datasources>
<worksheets>
<worksheet name='Boxplot price (per city)'>
<table>
<view>
<datasources>
<datasource caption='First_output' name='federated.0fsy9he1g2vwcc1dirabf06ncki7' />
</datasources>
<datasource-dependencies datasource='federated.0fsy9he1g2vwcc1dirabf06ncki7'>
<column caption='City1' datatype='string' name='[City]' role='dimension' semantic-role='[City].[Name]' type='nominal' />
<column datatype='real' name='[Price]' role='measure' type='quantitative' />
<column-instance column='[City]' derivation='None' name='[none:City:nk]' pivot='key' type='nominal' />
<column-instance column='[Price]' derivation='Sum' name='[sum:Price:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='false' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[federated.0fsy9he1g2vwcc1dirabf06ncki7].[sum:Price:qk]' field-type='quantitative' scale='log' scope='rows' type='space' />
</style-rule>
<style-rule element='mark'>
<encoding attr='color' field='[federated.0fsy9he1g2vwcc1dirabf06ncki7].[sum:Price:qk]' palette='red_green_diverging_10_0' reverse='true' type='interpolated' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<reference-line axis-column='[federated.0fsy9he1g2vwcc1dirabf06ncki7].[sum:Price:qk]' boxplot-mark-exclusion='false' boxplot-whisker-type='standard' enable-instant-analytics='true' formula='average' id='refline0' label-type='automatic' probability='95' scope='per-cell' symmetric='false' value-column='[federated.0fsy9he1g2vwcc1dirabf06ncki7].[sum:Price:qk]' z-order='1' />
<style>
<style-rule element='mark'>
<format attr='size' value='0.25' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0fsy9he1g2vwcc1dirabf06ncki7].[sum:Price:qk]</rows>
<cols>[federated.0fsy9he1g2vwcc1dirabf06ncki7].[none:City:nk]</cols>
</table>
<simple-id uuid='{51029130-D6E2-4C64-AE13-9D88F85B253D}' />
</worksheet>
</worksheets>
<windows source-height='30'>
<window class='worksheet' maximized='true' name='Boxplot price (per city)'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0fsy9he1g2vwcc1dirabf06ncki7].[none:City:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{1673EE56-CF17-4279-BF7B-A0EBB9EECCB0}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Boxplot price (per city)' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOy9Z3hc13Xv/T/TMSiD3kkUFrBTbGKVKJKiSJESi7oU2bKd5MaOY/vasfI8
8ZvkRr5J3vcq9nWcOHKNFTtuEikpkkhKAsHeBJIgCBJEIRrR2wDTMPW098OIQ8yZA2pEALMH
wPp9kfYpg8V9ZvY6e1VOlmUZBEEQxIxDw1oAgiAIgg2kAAiCIGYopAAIgiBmKKQACIIgZiik
AAiCIGYopAAIgiBmKKQACIIgZiikAAgiThEEAbW1taisrITf78f169cxODgIQRAQCATGvI/n
edTX10OSpBhKS0xFdKwFIAgiEkmS8P3vfx9OpxO5ubkwm81wOBxIT09HZWUlurq68Oyzz0bc
19fXh+9+97sYHBzEb37zGxiNRgbSE1MFUgAEEYf09/ejpaUFr732GrRaLQDgl7/8JVJTU/H6
66/Dbreju7sbGo0GW7ZsQWlpKV599VX8xV/8BV5++WW8+uqrjP8FxFSAFABBxCGDg4MoLCyE
TnfnJ2q32yGKIv7oj/4I7e3teOmll1BVVYV33nkHW7duRWFhIbKzs+H3+xlKTkwlyAdAEHFI
fn4+2tra4PV6IcsyRFEMneM4DjzPg+M4rFy5Ep2dnXj//ffx8MMPg+M4hlITUw1SAAQRh2Rk
ZGDLli34xje+gb/8y7/EtWvXQueKi4vx0Ucf4Wc/+xk4jsPDDz8Mm82G4uJiVFZW4pVXXkFr
ayteeeUV9PT0MPxXEPEOR9VACSI+kWUZTqcTgUAA6enp4Hkeer0eGo0mZA5KSEjAr371K+Tn
52Pfvn0IBAJhJiCz2RzyIRCEElIABDGFqa2tRW1tLZ566qkwfwFBRAMpAIIgiBkK+QCiZLQT
jiAIYjpACiBKaKNEEMR0gxQAQRDEDIUUQBQIgkB1VQiCmHZQ2EAUUBgdQRDTEdoBRAFlVxIE
MR0hBUAQBDFDIQVAEAQxQyEFEAUUAkoQxHSEFEAUCIJAiWAEQUw7SAFEgV6vp0gggiCmHaQA
CIIgZiikAAiCIGYopAAIgiBmKJQJTBAEEQMOXWhCxeUWJCUY8ezWxVhams1aJOoHEC2CIFDD
DYIg7okz1zrwvT+cD42Neh1+/lePw5JoZCgVmYAIgiAmndrWgbCxnxfQ1DXESJo7TPorrd/v
R2VlJRYsWIDs7OzQsZMnT4LneWzevBlJSUm4ceMGWlpaMHfuXCxevBj9/f2orKxEamoqNm7c
CK1WC57ncfLkSfh8PjzwwAOwWCxobGxEY2MjiouLsWzZMng8Hpw6dQoAsHXrVphMJgiCgNOn
T2NkZAQbN25ERkYGmpubcePGDRQWFmLlypXw+Xw4deoURFHEli1bYDabJ3tqCIKYIeRmJIWN
OQ7ITU8a4+rYMekK4Ny5c3C5XHA6nSEFcOHCBcyZMwcpKSk4fvw4tm7dioaGBuzZswfvvPMO
ioqKcOLECTz22GOora1FfX09lixZgosXL6KwsBA5OTk4fvw4du3aherqajz55JN47733UFJS
gnPnzmH58uWQZRknT57Ezp07UV1djfT0dKxatQrl5eXYv38/Lly4gGeeeQYfffQRZs+ejZqa
GixYsAAmkwnHjh3D448/DkmSQlnAsixTMhhBEPfEI6tLUNc2gIsNPUgw6LD/gTLkpScyX1Mm
XQFs2bIF165dCztmtVqxefNmcBwHnufR19eHuXPnwmAwoKysDG1tbUhOTkZSUhKWLl2KU6dO
YcmSJejt7cWGDRtC1Tn7+/tRUlICg8GARYsWobOzE263G/n5+QCAyspKAEBPTw8effRRGAwG
GAwG9Pf3Y/bs2TAajViyZAk6Oztht9tRVFQEjuPg9/tDso5WANQTgCCIe8Gg0+Dl59ZhxMtD
q+VgNurjYj2ZdAUQTSllSZJCmbYajQaiKIbu02g0qrV4OI6DKIqh+7RaLfx+/5h/7/Zx5X0a
jWbMB6HRaELyAMGMYIIgiHsl3WBgLUIYTJzASUlJsFqt8Hg8AICsrCx0dHRAlmW0t7dj1qxZ
cLlcEAQB7e3tyMrKAgBYLBb09fXB5/NBEARkZ2ejs7MTsiyjtbUVeXl50Ol0cDqdcDqdoaid
tLQ0dHd3IxAIwOfzIScnB93d3ZBlGW1tbcjNzUVCQgKGh4fhdruh0ZBvnCCI6c+khoEKgoCT
J09iaGgIGo0G8+fPx/Lly+F0OvHhhx9ClmVs3rwZOTk5OH36NAYHB5GZmYmHHnoIjY2NqKmp
gV6vx+7du2EwGODxeHDo0CHIsowNGzagsLAQ58+fR29vL1JTU7Ft2zZYrVacOHECkiRhx44d
SEtLg8/nw6FDhyBJElavXo3S0lJUVlais7MTycnJ2L59OxwOB44ePQpJkrBt27aQ0rn975Ak
CYY4094EQRDjgVkegCzLkGU59LZ9e8xxXMhcI0lS2Hiy71NeMxrKAyAIYrpBiWBRwPM8JEmC
0cg2aYMgCGIiIWN3FFA5aIIgpiOkAKKA53nm8boEQRATDSmAKKAdAEEQ0xFSAFFwOwqIIAhi
OkFhLVFAeQEEQUxHaGWLAlIAMxtRlNA3PAJeID8QMb2gHQBB3IUeqwt///pJ9NvcyLSY8Tef
fwAleWmsxSKICYFebaOAooBmLr+vuI5+mxsAYHV48Jvya59yB0FMHUgBRAFFAc1cRnx8+NjL
j3ElQdwdUZJQd2sQ7X121qKEIBMQQdyFXevmoaa5D6IkQ6vhsHv9PNYiEVMQl8ePv/3FCbT1
2aHVcNi2qhRf3b+GtVhUCiIabjeDoVpAM5O2Xhsa2q2YW5iOuQXpUZU4J4jRvHH8Bn5XcT3s
2A/+YgdK89n6k2hFiwJRFCkPYAZTkpdGjl9iXNhHfFEdizXkA4gCnU5HoaAEQdwzW1YUh+0c
s1LNWFqazVCiIGQCihIqB00QxHiobx9E+aVWJJsN2LOhDJmpZtYikQKIFlIABEFMN8iuQRAE
MUMhBUAQU5Dm7mFUNfZQeYophCzLGHJ44PYGWIsSgmwaUXC7IxiZgIh44IcHP8bxK7cAAJkW
M/7Plx9GpoW9PZkYG0GU8H/fuIBztZ3Q6zT40q4V2LWOfU4J7QCigDKBiXihrdeGk9XtobHV
4cGh8zcZSkREQ2V9N87VdgIAeEHC60euxsVOgBQAQUwh3D4ekiJuw+Vhv5AQd0e52POiCD/P
3nxHCoAgphALizIxO8cSGnMc8MiaUoYSEdGwdmEB0pJNd8aLCsPGrCCjNkFMIbQaDf7hT7bg
g8pmOEb82LKiGPNnZbAWi/gUuq0u2F13Mn9vdgyBFyUYdGxNy6QACGKKYUk04bmtS1iLQXwG
Tl1tx2jD3bDLi2st/Vhdls9MJoBMQARBEDEgPvNtmSkAQRDgcDhCY5/Ph9bWVvh8wW2SKIpo
b2+H3X6ndrYsy7Barejq6goVZ/P7/WhtbYXX6w1d09vbi/7+foxOch4eHkZHR0fovkAggNbW
Vrjd7tB9/f396O3tBSVHEwQxE2CiADo7O/G73/0Ox44dAxCMs3/rrbdgs9nw5ptvQpIklJeX
o6urC0eOHMHAwAAAoL29HSdPnkRjYyPOnz8PURTx1ltvYXh4GG+88QYEQUB1dTWuXr2Kixcv
4saNGwCA7u5uHD16FG1tbTh58iRkWQ7d99Zbb8Hn86Gurg4XL17E1atXUV1dzWJaCIIgYgoT
H0BaWhr279+Ps2fPAgD6+vpQXFyMVatWwefz4datW/B6vdi5cyfKyspw9epVPPzww6iursbj
jz8Og8GAgwcPYmhoCDk5OVi9ejVkWUZ7eztaW1uxb98+cByHt99+G0uWLMHVq1exa9cuJCUl
4a233oLdbofFYsHq1athNBrR2tqKhoYG7NmzB1qtFgcPHsTKlSshSVJoN3C7JwBBEMRnRc2q
IEkS8zWFiQJISkoKmWwAwOVyITU1FQBgsVhgs9mQkJAAjuOQmJgYZhYyGo0AgiWaHQ4H0tKC
ddpTU1PhdDrBcRx0Oh1kWQ6VcOZ5HiaTCRzHwWg0wm63h/2922YfvV4PAKH7ZFkOmYxGKwOC
IIjPgjJ3A5jBCkBJcnIyOjo6AAAOhwN5eXno6OiALMtwu90wmYLxslqtFn6/HwaDAYIgwGKx
hO6z2+1IT0+HLMsQBAEcx4UWb71eD5/PB51OB7/fj9TUVDQ0NIT+XnJyMjiOA8/z0Ol0ofu0
Wi20Wi14PtgH1mAwxHReZiJXbvai/FILEhMM2LuxLCzmnSCmKlpNZLinTqdjvqYwUQDt7e3o
7u5GV1cXrly5gqVLl+LMmTMwmUxobW3F+vXrcfPmTVy4cAHt7e3Ytm0bAGDFihU4dOgQ0tPT
kZeXh8zMTAwMDODy5cuoq6vDiy++CKfTiYqKCoiiiIULFwIA7rvvPnzwwQfIzc1Feno60tLS
4HQ6cfnyZdTX1+Ppp5+GLMv46KOPoNPpMHfu3DB5tVottQGMAbVtA/jur06HdlqVdV342cuP
w2zUM5aMIMZJnC4fTPoBOJ1OeDyeoAAch5ycHHg8HvT29iI/Px8JCQkQBAGdnZ2wWCxIT08H
EDTJDA4OwufzobCwEBqNBj6fD93d3cjNzUViYiJkWUZPTw84jkNeXl5o4bZarRgZGcGsWbNC
O4muri7k5OQgKSkJsiyjr68PoiiioKAgbMEXBAGSJDHX1tOdn79/BYcuhNe1+esXN2HdokJG
EhHExPDj/76EDy+2hB3725ceZJ4HwGQHkJKSgpSUlLBjZrMZc+bMCY11Oh1KSkrCruE4DtnZ
4W3UTCZT2H0cx6GgoCDib2ZmZiIzMzM0NhqNEffl5eWpystxHO0AYoBaanx6cgIDSQhiZkCJ
YETc8MiaOZhXGCxroNVw2LqyBPMK0xlLRRDTl7hwAsc7Wq2WIoBiQEqiEa9++WG09AzDZNBh
VjZ7B7DHx+M/P7yK1h4binJS8fmdy2FJNLIWK+74sLIZFVVtSDYb8MyWxVhYlPnpN80gbkcW
hh2LA6sCKYAooIYwsUOj4UK7gHjgx+9exumaYP39pq5h2N0+/O3nH2QsVXxx9nonfvzu5dC4
od2Kn738GJLNpChvo1FZ6+NBAZAJKAqoIczMpaa5765jInJOPH4eN7uGGUkTnwiiFHlMijwW
a0gBRIEoiqHcAGJmkZOedNcxAeQq5oTjOGSnJjKShvgskAKIAooCmrn82Z5VyE4LLmaZFjO+
snc1Y4nij0fXzsWqT8IZE4w6PLdtCWZlp3zKXUQ8QEbtKNBoNLQDmKHMLUjHj77xKNw+HmaT
HiYD/WSUmE16/M3nH4Dd5YNOq0EKOcmnDPRtjgIyAc1cJFnG1eY+1LT0Y3FxFtYtLoRWJaJj
pqPhOKSnUM7GVIMUQBSQCWjmcvRSC17772CEy+ELTfjCzuXY/+BCxlIRxPiRZZl8ANGg0WhI
AcxQyi+1ho2PXm4d40qCmFq8f/4mKQCCuBvK8D1eIFMgMT04eKqeFEA0UBbwzMXl8YePvf4x
riSIqQUHCgONCnICz1yUOwC1hB6CmIo8/dAiUgDRoNPpVGt5ENOfB5YXhY+XFY1xJRFPyLKM
W702HL3cilu9dtrFq7B7/TyKAiLiiwAv4mJDN5ISDFhams085DLRpL/rmIhPLjX04NXfnQMv
StBrNfirFzbi/oWRZeJnMgN2DymAmY4oSnB6/Eg2G6HTsl1srQ4P/urHFRhyBpsFLZuTg+9+
6SGmEVgfVoY38fjwYgv+5LGVjKQhouW9c43gPzHX8aKE98/fJAWg4IcHK0kBxJIeqwunatqR
lGDA5vuKkMK4WuKg3Y3/+8YFNHfbUJKfim8+vQ55GcnM5PnoYkto8QeAay39qG0bxNLS7Lvc
NclQ9O+UxKzYqZmNtNQpudVrIx9ANPA8D1EUx/UZXQNOfPNHH+EPx2rxi0NX8J2fHWNul/zl
4WrUtVsREEQ0dgzhZ+9fYSqPx8dHHHP7AgwkGUXEMyJb8lTghW1LkWkJZiZnWsx4/uGljCWK
P4rz0mgHEA06nW7cCuCDymb4AkJo3DngxOXGXqxZwK4naFufPWx8q9c+xpWx4ZE1pSi/1IKA
EJzrnLREpvMDBBcPh9sfNibin6JcC1771m4M2jzISjPDoKNy7kr+51NraQcQDRNhg5ZU3vbV
jsWSLSuKw8YPKcaxJjcjCUW5qaHxmoUFzJtmPLx6Tvh41ZwxriTiCY7jYNTrUJidAqNeR5n8
KmSnJdIOIFaotTeclcW2ZO6TDy5CglGPKzd7sXxODnavn89UnqOX29DUNRQaHzp/EzvWzMHs
HHatIU/X3IoYP/UQ1QJScqmhGx9dbEGK2Yhnti6O6BEQawKCiHfPNOB66wCWlmZj3wMLoKdd
QBh+XiAFECseWVOK9j47PrzYjKQEA158ZBnyMtj+SHQ6DfZsLMOejWVM5bhNj9UZeWzIxVQB
9Fhd4eMh1xhXxg5RlPBxXRccbj/WLSpkXoWzuXsY/+9vz0IUgzvahg4r/u0bj0LLMKrsjeM3
cPBkHQCgpqUffl7Ei48sYyZPPPL7iloyAcUKrYZD2ewMzClIw5z8NMwtSGMtUtyxuDg82ken
1WA+6/7ACtMBxzgsSJZl/PCtSrz6+/P46XtV+OaPPsKQw/PpN04ip662hxZ/AOi2utDQYWUo
EXChtjN8fKNzjCtnLmevd5ACiBVNXcP40dsX0dJtQ01LP/7pN2eprICCjUtnYWFRVmj8xOaF
zN9ulVFAMuMooG6rC2evdYTG9hEfPrrUcpc7Jh8/L6gcG1/QxHi53cUtNKYWlRHkZyaTAogV
rT02iNKdxWPY6cWQ08tQovjjYn0PGtoHQ+N3zzbC4fYxlCgyAID1DmDY6Q37HgHBfA6WJKvk
syQnGBhIcgevP1wpeQORSmqm097niB8FIMsynE5nqOiaJEno6uqC0+kMu2Z4eBi9vb2hGPpA
IID29nb4fL7QNf39/RgcHAyLs7fb7eju7g59viAIaG9vh9frDd03ODiIgYGBSYnPz1AJH8xg
/XYbZ9Q094W9X/sDAurb2ZoSlN8F1juAeMTpjqyQ6vSyzd8wGsIdvkY9uTuV8IIYHwpAEAQc
OXIEP/7xjyEIAmRZRnl5OVpbW/H+++9jcDD4VtjR0YGKigrU1tbi/PnzkCQJBw8eRF9fH/7w
hz9AFEXU1NTg8uXLOH/+POrqgk6gnp4efPDBB2hsbMSpU6cgy3LovjfffBN+vx/19fU4f/48
Ll68iKtXr074v/HKzd6IY9VNfRP+d6Yyar1kLYyzpeONDIsZWk34LiQ7jW0wQTxiU+yuh120
21aSk54UH1FAHMdh06ZNobctnufh8XiwY8cODA0N4erVq3j44Ydx5coV7NmzB0ajEQcPHoTV
akV2djbWrl0LjuPQ3t6O5uZm7Nu3DxzH4e2338bixYtRXV2N3bt3Izk5GW+99RbsdjtSUlKw
du1aJCQkoKWlBfX19dizZw+0Wi0OHjyIFStWQBCEUAKYLMsQhHvfRqolkvE8H9q5EIBjJNKZ
aXO64fOxK0+hlgjM8pllJOnx1OYFeO98E7x+AUtLs7F95Wy2MiWHK2mOAywJOqYyPbBsFn5b
cSM0fnBZIVN5BJXffyAQYCrTpiUF8aEAtFotLJY7oX48zyMhIQEcxyExMTE0SaIowmQyAQhm
5zocDqSnpwMA0tLS4HA4wHEcdDpdsN/lJ5UkBUEIfZ7RaITdbkdqajDhKDU1NWRS0uuD9UNu
36fT6aDT6UKfcfv/7/XfqESv14f+PazwBwS09dlRlGNBgpFtpUtOEzlHWp2O6RxFJBBxHPNn
9sL25di9vgwBQUJGSgI0GrZ+CZcv/MVIlgEvLzOdpyc3L4bRoMd/n23Evk0L8NiGeUwry+pU
fv8Gg4HpHJ2t7Y4PBaBEr9fD5/NBlmV4PB4YjcE3DK1Wi0AgAL1eD0EQkJKSgs7OYHiXw+FA
WloaZFkOvW3ftvfrdDr4/X7odDoEAgFYLBY0NDSE7ktKSgLHcRAEAVqtNqL5C8/zkCRpXApA
DdbW5NYeG/73r07B5vLBkmTCd17chLLZmczkyVcpRJefye7tH0DcFoOzJLFVQqMJqET83C7n
wYrrbQN44/gNuH083jhei+JcC5bPzWUqU7zRPzwSHz4An8+H6upq9Pb2oqamBi6XCyaTCZWV
lTh69CiWLQsmcNx33304fPgwTp8+jdzcXGRlZaGvrw/V1dW4ceMGioqKUFJSgmPHjqG8vBxl
ZcEEp+XLl+PDDz/E+fPnkZqaivT0dDgcDlRXV+Pq1auYM2cOysrKUF5ejoqKCsyZM/Hp/mrr
COu15fUj1Rh2+SAjGE74H4ermcrTrZII1m1lnHgVh8XgfAEBp662471zjRiwsY0AAoDSvPCc
Fg3HoYhh8h4A/PJINdyfFBd0+3j88sjE+/WmOhzHxccOQKvVIjs7G7t27QIAmEwmbN++Hbdu
3cLcuXORmRl8Ky0uLkZCQgK8Xi+Kioqg0Wiwf/9+dHZ24sknn4ROp8PKlSvR2dkJjUaDgoJg
/e/CwkI8+OCDGBkZQVFRsKPTvn370NHRgb1798JkMmHx4sVITU2FJEmYNWtWmHy3dxzjQW3Z
YL2U2BXRG/YRxiGXzFXi1OB//+o0atsGAAC/q7iO//Pl7UwX3NZeW9hYkmV09DuYFs4btHsU
Y/aKMt6QZTk+FIBerw8t1qOZO3du2JjjOOTmhm/jEhISMH/+/LBrZs+eHfFZ2dnZyM6+k2lq
Mpki7issLFSVbyJMQGqdpFh3l3J5wkP1XIxD99Rs2cqIl5lO3a3B0OIPBOPdD1+4iT/ft4aZ
THH5hOS7DgkEfZ1xYQKKd/R6vaoT97MgSSrVQFWOxZJ4a3guSpF/X5n0NNPRaiL3SazbZj66
bh70o+r+zMq2YMU8tvb2zNTw3UcWZQJHYEk0kgKIholoCKOWicg6O3Hl/PAf6cp5eYwkIaJl
VrYloqplaT7bulJFuRas+aTdIscBTzy4gHn55RUKh+99c3MYSRK/2FxeUgDRMBE7ADVYb52V
5hXW5ha12v+sF5J4o7l7OCLCpu7W4BhXx4ZL9T04/0nxNVkGfnHoimp3t1jycX1X2LiyrpuR
JPEMRwogGkRRHHd5CLW1lfXa1tQ1fNdxrFFrkMO6bebUgO0cXW/tDxu7fTxaemxjXB0bXO5w
f5bTE1muYqaTaUkgBRANE/EWqpZkxTrxShm/HRhnpBMx+ehUauyrJRnFErU8AJ5xHsAcRbn1
OfnpjCSJXwRRIgUQDRqNZtxKwK2yJWa9TU4yh1dsTEqgujvxzrzCdOSk33FocgA2LZ019g0x
IB5DnFu6w3cgLT1sd7fxiNvHkwKIBkmSJsUUwfpHMmALj5UeoFjpuEev0+Jbz6yHUR9869+7
aQGWziEHpxLWv62pQNxUA413pqsdWpmHkMjYJEV8OrIs492zjaGGKyeq25gnORUoynVwHJDH
uCcwhQ5EBymAKNBqtdMyGkVplnL72ZqkiE+nb3gElXV3Ilwcbj9OVrczlAjoV5SjkOXITNxY
Mz1f2SYeUgAzmIhCl2zEID4DJoMuotl6UkI87txoCZ4KkAKYwSgtW/STjX/SkhOQpqgEWpzH
NhEsSdH+kQOQyLglJL3MRAcpgCiYiExgNVh/SXVaZSIYfR3ineutAxEml2OXWxlJE0RZRFBG
0DTFEnqZiQ76xUfBZGUCs/6SCmK4BGq1eIj4Qs0VxVHBPOIeIQVAEFMd1m8SxJSFFABBTCFU
q8rKtHMj7g1SAARBjAu1Pg5qhf2I+IMUQBQIghDRJ5ggWGAy6CL8AKxrSqklSk7X5MnpRlx0
BIt3JsMBTBD3Ai+IEeG7asXYYonaWk/L/9SAdgBRMB2zgImpiVqHNOqaRtwrpAAIghgXai9I
9Mo0NSAFQBBTiHh0uKr6ABjIQXx2yAdAEFMI9TBQWm7jgerqavzkJz9RPef28TAoeoC/9mpF
RH/n0LnXXouJ75EUAEFMeUgBxANFRUX44he/qHruo0stuNrUBwg+aPzDkBLzse2hRZiTr17H
SROjsiykAAiCICaA9PR0rFu3TvVcdZ8WUq8WXMAFWRYhJRWgbPFyrC7Lj7GU4cS1D4DnefC8
oma92w273R6yO4qiCKvVCmFUP1un0wmXyxV2n8fjgc1mC90nSRKsVmvY57tcLjidTophJghi
RhC3O4Dr16/j1KlT2LZtGxYuXAgA6Ovrw7Fjx5CcnIyCggKsWLEC77zzDjIyMtDd3Y0XXngB
N2/eRF1dHQRBwOrVq1FaWgqr1YoPP/wQaWlpIS397rvvwmKxoKenB88++yw6OztRVVUFjUaD
xYsXY8GCBYxngCAIYnKJWwWQlZWFbdu2hWXgVlZWYv/+/TCZTDh48CCKi4uRnJyMLVu24MKF
C+jo6EBtbS327t0LjuPwzjvvoLS0FJcuXcJjjz0Gi8WCgwcPwuVyQafTYevWraiurkZraytu
3LiBPXv2QK/X48CBA1iwYEHETmB82cBq2TIy4wxjFYdinGU8y8znKBKW8qhn3bJ+buqZwPTc
7qBmU4iHOYpbBZCbmwu73R52jOd5mM1mAMESzTabDZmZmQCAzMxM2O12cBwHvV4PWZZDjpRA
IIDExERwHAeTyYShoSFkZGQAADIyMtDX1wdJkmA0GgHcyfyVJCnUB0CW5XH1BBDFyActCEKE
iYspMpjKI8XhHEX8cBnP0WhT520kSWIqU3x+tyO7HdF3OxwZcawA1OA4DoIgQKvVQhRFJCYm
oru7GwAwMjKCxMTEMK16+78ajQY8z0On04HneSQnJ6OpqQlA0KdgMgU7LImiCI1GE7pPq9VC
q9WC53nIshxSEGPR2dmJY8eOqZ5raR2AdjBcoZ2pGELTlUTV6z/3uc/FIAwssifkp/0bJxON
NtIlpdfrmcoUEWHPeI70+si6P1qthqlMat9T1s8t3r7byjaeAPs54hCnCkCWZe2cBdoAACAA
SURBVHR1daGvrw+iKCIzMxM5OTlYvHgxKioqkJOTA4vFguzsbFRUVKCtrQ01NTV44YUXYLVa
UVlZCUEQUFRUBABYtGgRjh07huLiYphMJmRkZKC/vx+tra24fPkynnjiCQQCAZw9exZGoxH5
+eGeeZ1OF9XbP8/zsNlsquf83hFwoheQBHCCF7IhGW6XAzYuMOYcEARBTCZxqwD8fj+ys7MB
3Nm6lZWVQafTwe12Y8uWLdBqtdi7dy8aGhrw+OOPw2AwYN26daivrwfHcSHn8Zw5c6DRaGC3
27F9+3ZwHIf9+/ejvr4eO3fuRGJiIlatWoXGxkYIgoDFixeHySOKIkRRhE539+kqLS3FN7/5
TdVzP32vCp0fNwH8CLSubojpZXjsmQewdmHBeKeLIIg4wO/3R0Qf3sbncQG8BxB9gMQDvAdO
hw1Wq3rv5IyMjJjUIItLBaDRaDB37tyI4xzHRRxPSUnB/fffH3avcgEHgJKSkrBxUlIS1qxZ
E/bZY0X+aDQaeiOfQA4cOKA6n603e6EdGgo7dv7ECDpqU1Q/54knnvhUpUwQsaK3txcVFRWq
53iXF8tTb+/2UwHYcOPyGbReU//+fulLX5q5CiDekGWZFMAE0tzcrBr94LA6ofG7AUkCRC+g
T0Rflwyv3aT6OfRMiHgiOzsbO3bsUD3X1DWMvuGRsGOLi7OQnpKgen2sKhCTAogSKgk9cfz1
X/+16vGfvV+FwxeaAN4NrasTYvoCPPHiJqxbVBhjCQklgiAgEFD3V4m8HxDDo1n8Pi88Ho/q
9QkJCRPye/L7/WP75iQ+XCYRY8qj1WoZO6zZQQogCmjxJ2Y6VVVV+P73vz/meeXy+S//8P6Y
177xxhsTItO///u/4+OPP45KJhHAF77wtup169evH9N3N90hBRAFo0NDpxq9vb1jOqZkjxWc
d9RbHa/FzZs3Va9NSkqKiI6aLvz2t79FVVWV6jn/oBP6URU4OY7Dt76lvugsXrwYf/zHfzwp
MrJm6dKlYyqAPxyrxbnaTnC8G5zXCimlCF/ZtwaLijInVaaXXnoJTz/9tOq5l398FL6AAK29
FWJSPhLMSXj1K9tVr72dWzQd+fWvf42rV6+qnhMGnaQAokEUxSlrbz5w4ADOnj075nllDMLf
/M1x1evWrFmDl19+eQIlix/uu+8+5Obmqp775ZFqBPwCNO4+yMY0aAwm7N69WvXarKysyRST
KWazecyF0mzpg2xwAECw2JkhBZnZuZg1K29SZcrIyAgldEZgtEAGD1lrgGxIBkwpmDVr1qTK
E4+sXLkSBQXqkYY/P3SFFMB052tf+xq+9rWvqZ773D/+N1xuH7S2RojJs2Awp+DNv38qxhKy
Z/HixaqRYwDwq4+dkNx+cKIfYmIBNOYUbNu2bdJlev7558e0byuV9rlm4Nyb6p/z9a9/HZs2
bZpY4Ygpw5IlS7BkyRLVc/9xzk4KIBq0Wm1UO4C2tjYcOnRI9VzngBPpLjcgS+A4P2TXNRz9
705crFCPcPnKV74yISGOn+q/UJwnf0d88Morr6geb+4exs/erwJkBBV3WhlWleXj2a3qCmys
nQ1BAOQDiApJkqJSALm5udi3b5/quebuYfQOhYeBLSrKRIZFfVsdi25ARPwyf/581eM+bT9k
063gwGWEnJCBlMy8Ma8niLtBCiAKKA9gYvn4449V53OgvQ2akR5A8IMLOKEZ6cLNGzWQHZ2q
n7N27dqYdU4iiE/D7XajpblZ9VyLSh6ASXDANkYeQGFhbEKfSQFEQbQmICI6RkZGVOdzdmYC
Eg23HYfFAIBEg4yRkZGIawFKBCPijLuUd5YkKeKc2rFYQwqAiDllZWWqx/Xdw9ApzGSlRZnI
HMNMRv4KghgfpACiQBCEqIrBEcR0xW63o729XfWcre8WOE8/OMELjh8B5+nHraYG6LwDqtcv
W7ZsQpT34cOHQ2XdlWSNDEOSZSBRAMQWaFwa/Mu/qJsS582bh927d49bnqkIrWhRMJUdshUV
FWMmd6GnEyZBAse7IIsuaF16vPbaoOqlJSUlePTRRydRUnbcbY7kni6YeBEc7wIEJ7gRPV57
zap67XSeI6/Xi46ODtVzOWYBG+amAEgBkAMACLiH0dGhbrpbtmzZhMi0du3aMT/rfG0nxFEJ
fFoNhw1L1PMAEhLU7fDTgfLycjSP4Zfg+jpJAUTDVDY1rFixYkyTS2ZpF4RRnYo0HIeNS2fe
j+Ruc5RV2gV+1BxxHLBp6WzVa283FpqOWCwW3HfffarnmrqG0DfsDju26C6FzojYsXLlylBZ
fCUZJaQAJhRRFOHzelXP+Xy+iHM+nw8+g7pykWV5SiseYnz86Ec/Uk0Ec/t45Hg+6SxnkgBP
LbprmvHD7krVz9m5c+eYyo0gSAFMID6vF52d6nbGTpU8gGSNF54xHJxzVPohEDOHvXv3qh63
j/hwvTXctp6dloiyWeolEdLT0ydcNkId69AQTp06pXrO4fbD4w+vmOodSIBRr25efmjLFuoH
QExPmpuaVEM4W7pt6BkKL1yn9w/DNoaSnK7F6YipyYIFC/C//v7vVc/95L0qfFTZDI4fgcbd
AzF1Pv70pQexar56vSTqBxBHCILAPF53OjF2/H7kcYr0J6YKHMeNuXBzwQvujD65lnUiIymA
KGD9kAiCiMTldMJmt6uesw4OQhgVBaTTcBgcVHfSp6WlITNzcktXxyukAKJgKvcD8Pl8Y/YD
GBlxgRfu/Lu0Gm7Ma4mZjSAIY3+PXCNwucL9WyMjCdBzwqTK5Ha7YbfZVM/ZbLaIMFC7LUn1
WoNePynyTQVIAUwggijC7XarnvP7vOADvrBjXq8Xbp26kWOiyhzYbTb09/ernuvt6Y0IA+3L
UP9KCIIwbeup22w2WAfV8x+6u7vBC3eicTQaDt1p6jvCtPT0adsTwOfzoa+3V/Vcb29kGGiG
UYB/jDDQscISiYnHZrNhyKqet9LT3U0KYCIRRRGeMcJAu/qH0dQ1DE4KgAu4IJkykJ6kh3EM
BTCduVJdDVllRzXs8sLpUfSdHemB2aj+hvbAgw9OSJJewO8fs1+sx+2OyAMY69qJ7Cw1PDys
+hLgGPFhaGgo7JhO8mFojD+dlJSExMTECZOLmFr4fb4xv69ut5sUwERSUFCAZ599VvWc/b0q
NHibAH4EWlc3xPQybNz6ANYuVO/WM5156aWXVI///lgt6qrawAkeaNy9EC1zsHfbGqyYp17T
fjqX5hgeGlJVAPYRH4ZVFMDwGAqA+gEQd2P6/oKIuGUsM4kpMQXQmyFDBjR6QG9GSmratDWr
EOOjvqEBdTduqJ7rtrqCtYBkCeA00HAcRNst1WsXL16MJUuXTqKk8QspgGlOZ1cXGhoaVM9Z
++xhjjKO43AN6lEVc+fMmbAaLgQxETz99NPAGE3hn3vlLXj9PLRDdRAtJTAnpeB//d2TMZYw
/plSCkCSJNTV1cFut2PTpk2QZRnXr19HS0sLCgoKsGbNGrhcLpw4cQIAsH37dpjNZvA8j4qK
Cvh8Pqxfvx65ubmoq6tDQ0MDcnNzsX79eng8Hhw7dgySJGHbtm1ITk5m/K+dGFavXj2m0+07
Pz8OtzcArfMWJHMOdKYkfGv/dtVrJ9K+TUw97HY7rlRXq57rHHBgyOEFZBGQeEBrguhMQ0qi
UfX6LVu3TqaoxCjabt1CY2Oj6rmm1v6ppQBu3boFh8OB4eFhAMHIhPr6ejz55JM4dOgQHA4H
zp49i/Xr10OWZZw4cQK7d+9GVVUVioqKUFRUhMOHD2P//v2orq7Gs88+i6NHj6K/vx81NTVY
tWoVTCYTjh8/PmYq/lQjMzNzzBhnzpQKWfJD1hohGZIBUwqKiopiLCExFZg/fz6+/e1vq577
93cuofxSS7CLm7sPYtp87H1+85hZrkTsePzxx/H444+rnnvhu29NLQVQUlKCwsJClJeXAwAG
BwdRUlICnU6HBQsWoLOzE36/P2Qz9vmCYZf9/f1YtWoV9Ho9TCYT+vv7MXv27NB93d3dcLlc
yM/PB8dx4PlgzY7bfQCAYFimINx7XLMoRt7LBwIhGZmgdDLKYCqPWvEzPsBPukztHR1jlsy9
XteNgCBC43dC1pvBafVI06qXOS4qKsL8CSq8Vldfr5p7Yhvx4VpLsBaQxjsEKSEDuWmJEFzq
tYCyc3KQmpo6ITKNhfpzY/zdVuaQyzJTeQSVOQowniMZU8wENFH1MZTRFWPF3Ot0Ouh0ulAp
CIPBcM9/U6uNnGq9wcC2hLByPjm2JY3VQjr1Bv2ky3S3Gv6X/vEdeNx+aG2NEBMLoDen4Gtf
e2ZS5QGAr371q6rHr7X0o+o/giZO3UAVhOxVmL+yGF97at2kyzQW6s+N8Xcbyu82x1Qencoc
GRjPEQdgStc4yMzMREdHB2RZRlNTEwoKCqDX62Gz2WCz2UILdmZmJtrb24Pll30+5OTkoKur
C7Iso7m5Gfn5+UhMTMTg4CCcTmfEF1qj0VA5CIIgph1TagdQX1+P5uZmuFwufPDBB9i+fTuK
i4tx4MAB5OXlIS0tDQ888AAqKioABGuhA8CaNWtw5MgRXLlyBRs2bIDBYMDChQtx4MABZGVl
ITc3F0lJSSgvL4ckSdi+PdwRKooiJEma1nHnBEHMPKbUirZw4cKIiJbVq1dj9erVoXFaWlow
PGwUBoMB+/btCzt23333hXU4SklJwVNPPaX6d/V6/bjs/wRBEPEI2TWigOd5VUcXQRDEVIYU
QBTo9fop3RieIAhCDVIAUSCK4oRV5yQIgogXSAFEATVnJwhiOkIKIAo0Gg0pAYIgph2kAKKA
nMAEQUxHSAFEATmBCYKYjpACYAgZlQiCYAkpgCggExBBENMRUgBRMFkmIAosJQiCJaQACIIg
ZiikABhCPgCCIFhCCiAKRjeGmUjIBEQQBEumVDVQVkyE/V+riXzf16kciyXxtgPhVCSKNxkJ
YjpxzzsAWZZDNXKme52cicgCTjFHNshOVjkWSzQKBaRlnu0c+T2a3t+s6YHat4b1N4mIjnva
AVRXV+Odd97B/PnzodFosHv3blgslomWbVph0Ku0hFM5FkskKXx5FRkrclrspyZqz42e5dTg
nnYAhw8fxre+9S34fD4YjUZ0dnZOtFzTjkGHJ/KYPfJYLFEqICNjhURMTdR2yLQDmBrckwKw
WCw4ffo0Ojo6cO7cOWRnZ0+0XHHFRJi4ctISI47lpkceiyVKv4SWcd9js1EfcSxB5RgRX6i5
sjTMzYlENNzTL/5P//RPYTabsXDhQnz5y19GVlbWRMsVV4iiOO4oIJvLF3FsWOVYLPH4BcWY
ZyRJED8fOcf+ALXijHdEKfIFibU5kYiOe1IAr7/+OjZt2oTnn38eNTU16O7unmi54gqdTjfu
SCC9NnKq1Y7FEuWbG+uS16IkRRyTaCEh7gHlN5n2I+rc0wrU29sLnuchyzKGh4fhdrsnWq5p
R25GUuSx9MhjscSoD48BMDH2AaiZDVgrpakB2zlSe26MI5wj/FsGHfm3IuHuLQroueeew3e+
8x1otVqUlZVh7ty5Ey3ZtEOvC9e1Go5TzQ2IJTqFTDrGOxK1t/3pHmI8HZDVwncZPzZBDN9N
Ciq7y5mOTvsZFYAoivD7/SgtLcU//dM/QRRF6PV6ekuLgrpb1rCxJMto7BzC/QsLGEkEiIof
iZoJhpgKkJJUovRLqPkpZjqCKH02BdDX14cLFy7A6/Wivr4+dPyb3/zmtHcEj5e5BelRHYsl
qUkm9Nvco8YJDKVRz5amaJJwVEMuGc9RgiFyGTGpHIslBp0GXv+dsXIHTgCZFvNnUwD5+fl4
4oknUFVVheeeew56PYXoRcuAPdJP0m9zIz2F3aJrGwmPQrK5vIwkCaJmNqD3tvhHzXTI2pxo
STLB4b6jAVITTQyliU9GvIHP5gTmOA4ajQZ1dXU4c+bMZMk1LfH4IkMsvYzDLpVv16zfttXe
ZFk7E+MNtVQN1r4ko+Jtn+PYJxUqf1teP4UTK/Hz4r05gQ0GA37605/i1KlT0Gg0+OpXv4rM
zMyJli8q7HY7zp49i23btiEhIQEulwsnTpwAADz88MMwm83geR7Hjx+H1+vF+vXrkZOTg4aG
BtTX1yMvLw9r166Fx+PBiRMnIIoitm7diuTk5AmVU6uN/JGy/uHmpCeib3hk1JhtVJKaE1hZ
rmKmo2bLFkS2c6TMaJdlYMjpRVFuKiOJInNK/DwpACUcdw+1gGRZxubNm/HII4+EYuMnerGM
FlEU8fHHH8PtdkMQgg/49OnTuP/++yHLMk6ePIldu3bhypUrKCgoQFFRET744APs378fly9f
xrPPPovy8nIMDAygpqYGy5cvR0JCAo4fP469e/dCkqRQFIokSaG/cS8kJxgijiWa9OP6zPGS
kRxufspIMTGVR1JxQovi+OZ9vEQsrTKYyqNmJ9NwbGVSe4+RZcbPTTFPsiyz/W6rPDdRFJnK
xHGfMQpIkiT84Ac/QE9PD3w+H/75n/8ZZrN5suT7VDQaDXbs2IGKigoAwYfs8/mQk5MDAPB6
gzbtvr4+PProozAYDDCZTOjv78fs2bOh1+uxcOFCdHV1wel0orCwEBzHgefvbB9Hf5HGE5I4
4vFHHvP6mYY5XmvpV4wH2IZdqvoA4q/aLEt5lJFbQDCaI95kEiW2zy0iDFRk/D0ao2Ie6+f2
mRSA2+2G2+3G9773Pbz//vuorq7Gxo0bJ0u+T+WzRD+MvlaW5dCY47gxH4JGo4FGowlp6fE4
vVOTI529aclmpo70gqwUWJ3eUeNkpvJoVAzcOq2WqUwR3zBufN+D8WJOMILjwjcCZpOBqUx6
feQyYtTrmcqUYjaG2f1TEtnOkbL0OgBodWy/22aT4bM5gUVRxNDQEM6ePYvOzk5cvnwZZ86c
gcfDtqrlbTiOg16vh91uh91uD01uRkYGOjo64Pf74fP5kJ2dje7ubsiyjJaWFuTl5cFsNsNq
tcLlckWUfbitCMaDQfVHwjZUTu0tiSWcyhSzDnFU/n21pjWxJMmkj3DWp5gjzYuxJElh3uQA
JCawjRBUhqGaDBSxqCQpQf/ZdgAJCQlYv349Ojs7kZaWBgDo7OzE8uXLJ0XAT8Pr9eL48eNw
OBw4ceIElixZgk2bNqGiogKyLGPnzp0AgDVr1uDIkSOoqqrCunXrYDQaMX/+fBw4cAAZGRnI
y8tDUlISysvLIUkStm/fHvZ3RFGEJEnQ6e59wVZLRWfdDyASxv0A1ExArHsUKG3JjOfI5Q1E
OMZHhzuywOMPhI1lsI9wU86Jw8228GI84vYGPpsCMBqNeO655yZLns9MQkICdu/eHXH8qaee
AnDn7c1oNGLfvn1hx1asWIEVK1aEjlksloj7bqPT6cZdDVTtB+Hx8UzzAJRLGWtTu05ll6Vl
XjAvvkJlE016aDRcWDRQMuMdgKiyc2SdeZuRkgD7qDyXdBUT7EwnKzVxevYEjiZb8rNkVAqC
MO4dgDIumgP7HUBAESoXECa+8f1nQa1ei5qDMZZEKEkmUtwhwIsRitofYPvc4jGDe8AWnnip
log50xl0eO69J/BMQq/Xj7sc9KZls1GYlRIab1tdiqxUdhFUADCvMP2u41gTjzsA5TrGOi+t
MDslwr49l/FzS0oI723NIdIvEGtSk8Mzf9MYlzmJRziMoyn8TILn+XGbgKwOLwZHvYU0dliZ
27etijaVVsYtKlXt64xfuZWPiLWZzDHij9ipsX5uEUmOHPskR8dIuA/ATj6ACERJJgUQDROx
A7jRNhCWndg54MQA4x9uhFmM6i5EoHyTTWJsb/f4+Qgn8Ig3MMbVsUEZTQZZ5ViMUSZesX7Z
ikc4jnYAUXHbBzAe1OvcsF1w0xXbZNaOMrVIKT3jRh5mU3j4oFrf4liiVhqDdfvFiDnhIuct
1sTbc4tH9FotKYBo0Gq1484D6Oh3RBxrVzkWSzoHnHcdxxq1nsTeANtwwv5RtZIAoN82MsaV
sUEQpQhTGc/Yed9tdYWNZRnoGWI7Ty5P+K7IxXiXFI+4PH5SANEwEclIOemJkcfSIo/FEl6x
TWe9kMQj2YpnlJ3K9pmV5KUiJ+1O0T6OA9YybCoEqFf+NDCuv6+0ZrLebcclZAKKHaV5aWFf
wmSzgbkCiMwEZmu3VTP36JlHAcVXHoBep8XfvvQgVs3PQ2qSCd94ci2WzclhKlOawpTIceyb
CynNidQQJhKjXkcKIBomIgpoYXEminItofHWlSXM8wAcioYwrDNK1Rx1rH13g/b4iycfdnph
dXjgD4joGnQyn6O+4fA5keXIeYs1keWgaXerxOvnSQFEw0REAV1u6EFbrz00/uDjZubRGwWZ
KYoxm7Let0lUcRyydibmZYTPSX4G2zkK8CJ+cOBjtPc74A3wOHiqHpcbe5jKlKRS94f1c1PW
IkoysY3eikcyLGZSALFC6WANCGJEtmKscSpKVCvHsUbNBMXaLKVskznMuG2mw+2DU7FT6xpk
67xXFlrjOPY9gZUdwNQCDGY6tAOIkvGGgALArBxL2JgDwjKDWVCcF96xqZhhBycgsjQFwL48
hbJiq7L9YaxRL5gXezlGM+SM7Ag27GSrKJXOe9b+tnhEECVSANEgSdK4lUBt60DYWAZw49bg
uD5zvDS0W8PHHdYxrowNglqMO+sdwEj4QmZzsc0o9QWEiCQntX7TM53I8F32vpt4gxdIAUSF
Tqcbdx5AtkrdH9a1gJQysQ5xVHuVZZ2/mZMaX2+SWk1kRwKdSr/pWGJJjKwFlGI2ql8cI5QR
ZTrG0WTxiNFAiWAxY/uaOVgxLxdajoNBr8UzWxYxNwH96eOrkJeRBI7jkJuWiD/bs4qpPBGV
1+IApclHLeY9lgw5vRGllllHJikjbGSwN90pv0pqHblmOlmWaVoOOh4xGXT4uy9sxvkrOehq
uYHnti9jLRJm51jwg7/Ygdf/axh7d21GQT7bqpJqMf+s8wDcCvOKchxrstMSodNqwpzj+Zls
XyTUylH7eXbNzoFIBaTmX5rp+ALkBI4Zkizjvz6qwU/fu4zyi804X9vJvEDVsMuLf/j1aZyp
6cC/vlXJ/E0yJz0p4liuyrFYElEviWEDHyA4H2sX3cn8NRp02LFmDkOJxsoEZvtumWUJN9Wx
NrfGI7npyaQAomEiFuqrTX1453QDnB4/7CN+/PBgJXwBtm9Jvy2/htq2Qfh5AQ0dQ/j1hzVM
5VGbD9ZzFFFThnGo7LDTi8sNd+L+/QEBp2vaGUoUWXlzrGOxRFnWhH2Zk/gzQQ07qSFMVIii
OAH9ADxhDk1fQIhYXGLNgM2jGLPdAQw5IstjDzEOJ1TuiljPkdXhiTBv9Ay5xriaHayXO2WS
JevfGvtwhkj6ht2kAKJBp9ONOxN4xbzcsGiJJSXZzLelJmP4v4l18k5eRvyZgDYumR0+Xjp7
jCtjQ2l+GhIVWa1LS7MZSRNEGXPPcUAm4++2MlpLzbw409m6spicwLEiKzUR//Q/tuGDM1fh
6OHw5Rc3TUiV0fEgCIpqoKz778bfS1JE5q+N8Y7EMeKLMIux3pUok+U4cMyjpSxJ4b6b1CS2
YanxyJMPLaIdQCwpzErB4xvmY05BOvOeqQCQr6j9w7oWUKriRwsAKYlsf7itPbawcUuvbYwr
Y4OaklRrEhNLkhVd0nQ6DfPdpF1R6NDuYuu7iUd+d/Q6KYCZzK0+h2JsH+PK2FDfHpkZzTo7
WdnvlnWvW5NRF1HaOJlx0tX11v6wcYAXcbNziJE0QZTZ0W4fax9A/PFxXRcpgJnM/Fnhcf/z
CzMYSRJEWXlzrGOxRJnRyjrDNSnBgOe2Lgllti4pycbGpbOYyrSkJNwHYTbpUZqfxkiaIAuL
s8LGixRjItgmk3wAM5hnty6BLyDi4plbuG9VCV58hG1y2uh+CUAwvjxfxTEcS5QlBOKhpMDe
TWVYv7gQv/lVH77+xc3M+yZnKcplJJkMzHvwfnHnfeAFEVXnmrBy2Wx84dH7mMoTjywsypye
OwCv1wubLdxW29fXh+bm5lA4p8/nQ0NDAxyOoBlElmV0dnbi1q1bk5ag5fXzqG7qg9PtZ17k
DAgusHs2zseC2Vl4eFUpEoxs3wcaO8LNBn5eDOuhwIL7R7Vb5Djg/kVs2y8CwRh7q8MDb0Bg
XnIBAC7Wd4eNB+xutDL2lSQm6PHU5kVYWpKN3evnqfaamOl0W13TTwE0NjbizTffxMWLF0PH
Ojo6cO7cOVitVhw/fhyyLOPtt98Gz/N477334PV6cf36ddy4cQMtLS24fPnyhMvldPvx8o+P
4ifvXca7Zxvxr29dZJ4JfKmhB1//4Ye4cKMTf/fLkzh7vZOpPAUqtZGUjupYo3RMpyZGOqpj
zc/fv4Lv/Pw4qpt68Zf/Xs689LLSUc9x7P0SZ6514Js/+ggX67vxN784gTPXOpjKo1bninWu
RE7aNKwFNGvWLGRnZ6Oqqip07Nq1a9ixYwcSExPx9ttvY3h4GOnp6Vi6dCk4jkNLSwuampqw
d+9eaLVaHDhwAGvWrIEkSaFFWpZlCMK9Z6WWX2oOawpz8uotPLZ+Lkry2NXg/035NQQEEVoE
a6f8pvwa1i/KZyZPW89wxLHWnmEsKspkIE2QN47Xhv5floE3jt/Aw6uKmcnTNehC+aWW0Lh3
aASHL9zE89sWM5PJao9sCWm1u5GZwk5Z/vbodQiiBC2C4c2/O3odGxaz272plZMXRWlca8p4
ae93TD8FYDabwfPhEQCiKMJoNILjOBgMBjidTqSkBN82U1JS0NvbC1mWofukfsno0s+jFcB4
UG12wotMdwFq6fIs5VGfI4GxTOE/3ADjOeIFISIUlLVMamYo5t8lZTE4xvKoIUNm/vufdgpA
Db1eD6/XC51OB7/fj7S0NNTV1QEAbDYbUlJSoNFoEAgEoNPpQtpao9FAqr/NrgAAIABJREFU
o9FAEIKLkMFw77H7O9bOxbErt2C1BhtVrJyfi0Ul2UyTwZ7Zshj/9nbQVKbTcHhmy2Lo9exs
pdvXzMF752/i9k83Oy0Rq8oKmM7RsjnZqKhquzMuzWY6R/NmZWHd4kKcrw2a61KTTHhs/Xym
Mu28fx4+qLyzK8lLT8KK+ex2kgCwY80c/P7Ynd3bI2vmMJ0jZbIcEGylyVKmbatKp58CaGho
QFdXF9ra2lBVVYVVq1ZhxYoVOHz4MLKyspCVlYXU1FR4PB6cO3cOra2teOaZZ8BxHA4fPgyd
ToeysrKwz9RoNOPW1BkpZnzvz7fjo7M1sPUY8aU/Yp8J/NCKYuRlJuONN2149JFNWLOUbVXJ
jgFnWK37IYcHLk+AaTKYspNUPHSW+tYz67BhcSHK3+vAN776CDItbMsudA6E55MMubwY8QaY
JjsqE/jaGDul1bLsWfe7buwYmn4KoLCwEDk5OVi1alXIlJOXl4ddu3bB4/EgJycHALBv3z70
9/dj5cqVMBqNKCsrQ2ZmJiRJQlZWeMywLE/MVu1Wnx0NHVYINieGnV7mMe4cx2HB7EwsLc1G
UY6FuUIaVvSWFSUZ9hEfUwWwqDgL10e184yHeHL7iA9Xm/sw5PSitceGjJQEps/OqnBC84II
p9vPVAEom8B7/GyrysZjt7tp2RQ+KSkJaWlpSEtLg8VyJ67cYrEgLy8vpBT0ej0KCwuRkBCs
785xHDIzM5GdrW6WGe8PrL3Pjn/8rzOobu5D3S0rXvnPU3ERChpPqPW2Vf6QY83TDy3GUw8t
RHZqInavn8c8V0KUJPzjf51BRVUb+m0j+P9+exbN3ZHO81jiVT4jGfAyLuO9Z2NZKGPaoNNg
z8b5TOVhH/MTyeMby6bfDmAymIi3q/p2K/hRxdd6h0Yw6PAwr3ZJ3B29ToPPPbIcSe5WrF9f
xrzGjc3pC4smEyUZta2DmMcwizviTZ8D87j7NQvy8b0/fwRvvGHHY7sewqK5bH0S8cjqsrzp
twOYDDQazbiVQGl+WlgdmfSUBGQw7i4Vb5hNkSYD1gtJvJGabEL2qFLLHAfMLWRbdmFeYXpY
mHuWxcz8u81xHIpzU1GSl4rc9CTm5k21P69hLhNHCiAaeJ4fd0OYeYXpeH7bEnAADHotvv3s
euZlBWRZRnVTL6pu9qKxY4h5mFxacmTcuFqF0FhT1diDSw09qLs1yHyOdFoNvv38xk8UI4fn
ti6JqMUTaxbMzsS+TQsAcNDrtPjGU+uYl6eQZRk3O4dws3MInQMO5s9N7e+z7pomyzIpgGjQ
6/Xjbggz5PDi/fM3ISMY7/67itpPvWeyKb/Ugr9//RTqbw3i+29ewPvnbjKVx6Eo4QsADjfb
Mr4fVDbhu786jYYOK374ViXePl3PVB5ZlvHu2YZPmtPL+KCymXkmcNegE4cvNAGQwQsifnmk
mnmJ6nPXO/FXPzmKKzd78cp/nsK5WrZZ7ukpkZFa6clsd0kVVW2kAKJBEATVTL7PwrnajrDF
rLZtAB39jrvcMfkcutCkGLNVAN3WyNaG3YNs2x0eOj9qTmTg0PmmsS+OAfYRXygHIDS+0cVQ
IuDopdawxKuWHhvq29mW8f6gsjkUeCPJwIeVzUzlUVPSymZDsebIx02kAKJBq9WGZQffC8oy
whwHJJnZNoWxKMIrlV2UYo1auKdSxlhjUdT+sTDuLGXU62BQmFdSWH+PFN8bjmP/3JRNaljX
JlILAmIdF2RJNJICiIaJcCBtWjYbaxbkQ8Nx0Gk5fO6R5cy3gF/ctSJod+eA1EQj/nj3Cqby
7FgzB4VZKeAQnPMNS2ahbDbbHgWf37E85MDTcBw+v2M5U3nMJj3+5LGVSDDoQnO0YQnbfgCP
rp0b5pjetrIUhdmRhf1iyYuPLENeRtD5m5+RhBe3L2Uqj1ojofG+VI6Xl3YupzDQaBBFcdwm
IL1Oi//ncw/gemMBbt6owZObF06QdPfOnPw0/PQvH8N//mYEj+/chvx8dkXXgOCb5L9941Gc
rqpDe+M1vPTCRqbyAMCVpt5RpgQZV272YuX8PKYybV1ZgnWLCvGLX/Tja89vYB7h0m11wuq4
Y864cWsAgigxDXIozErBv379Ubz+62E8sWcLslQqzcYStf4IrHsmlOSl0Q4gGjiOm5AfGcdx
yE5NZN5WcDRGgw5ZqWZo46DRCQBoNBwWFWWx37J/Qt2twbuOWWE26WHQaZkv/gDQ0DEUFtHS
P+zGkCKrO9ZYHR5891encKK6DT88WAmrg608Lk9kMIPLy75PcXz86uOcicgDAIIRHIN2T1i9
GyK+WVhErQU/FUU4owyZeZ2DXx6pxvXWAQR4EdfbBvD6katM5dGphMWyDgMHQCagWMELIl79
/XlUXW+CztMNTdZC7H9gQVy8wRFj88yWRRAlCedOdGLl6rnMS0HEI9mKbHaTQcc8oKC9LzzC
rr2fbWc5gy5ysVc681nAXgVNASYiieTs9Q5crO+GKEsQBAm//qgGNldk3DsRX+h1Wnx+x3Ls
XDsXezctYF4KIh4RFLX3JUlmngeQnRbepzhb0bc41ghi5HywrgYKkAKIiolwAjsVCU2yrG4X
JIiphssTCBvzggQf42JwyuZCrHsnqzY7ioN+zqQAokCn0407ZGvDkllhce5LSrIwO8dylzsI
YmqgDPlMMhuYl/DYuXbOqPBdYOf9c5nKM68wPWzMccEoPNbQfjZGZKUm4vt//gg+OHMV9h4d
/uylzWT/J6YFt3rD7esjngCsDk+EGSaWbFo6G9mpiXjzTRt279qMFQvZ5kq09YXPkSwHe/Km
Mc4Foh1ADMlOS8SO++dgdo6FbMljIMvBJjDiOE1u050AL0IUJeZFzgCgKNcSVu0yNcnEfAcg
yTJ6rC64PH70D48wL7ymV4n40Y+zvthEQKsQETeIkoSfvFuFM5frYPB0I2V2Cx5ZU0o7JQVX
bvbi54euwNHUiYQjV/GFR++DhmFuyZKSbHzx0fvwwelq6M0efOX5DTDo2S5uRz5uwi8OVUM7
NIyb71VB1Jjw2AZ2TWGKc1PDxhwHzM5hm5wG0A4gKiaiHDTx6Zy/3onySy3wBgSMeAP46XuX
mVe6FEQJvym/ho8utuD9c43wM3Zu+nkBPzxYiR6rC35ewLvnGnGxoZupTBzH4fENZfjy3lXY
urIEC4vYZpQDwWqgt5EBnLvewU4YBLOlRyPLQM/QCCNp7kA7gCjQ6/UQBMY9RWcAXYpqoKIk
o294BBkMm56/eeIGDpysg9buxqELTdCYkvHHu1cyk2fEE8CINzzqpn+Y7UJyO8flUk0DDP4B
6LMXMn3bBoCCrJSwiqQFjEtBON2BiGPxEAVIOwAibti4ZFaYb6QwKwVls9m+TSpLP9xoY1sK
Ij0lAcvm5ITGiSY9Vi9g2+7w47ouXKzvBiBDEET8+qOaCCUVa17cvhQ56UEndF56Ev5oO9sE
vhwVhzjr3ASAFAARR8zOseCVLz2EjUtmYcW8XLzypYeYp8srzRnK0hCxhuM4fPu59fjCo8tR
mpeGf/iTrcjPSGYqk30k/E2WF6RPGtaw40xNBwZsbgBAv20EZ661M5VHqw330XBQrxD6/7d3
59FRXfmBx7+v6lWpVFVa0IZACC2sAgwyi4WMwcZg2tjdbtp2O5lMu9s+vaTdnZkzk0wyJ5mT
E2eZJJ3pTM+czoyTzHROOz1tt40NGGPTRrhZZAMyEhJYSEISQkJblRa0lpZa3ps/ZD1LrGWQ
eA/p9zmHc3i1/nTrVv3eve8ud5skAGEpyxem8MLOfFbmpJFiYtfPuOe2ruTpLctJSXCzs2Ax
z1tgKQiPy8nXNuexKCOJ3PlzTL9Ifr13N/un7e3j1ZM2hHn7mLk7uQ1dlRB1YHjU/G5luQYg
xE04VDvfejyf+OFLFBYuxxUjX5mr3b80ndgYlZHPen2WZiaTkmhu8r665ei4zlo8d9P1RkWZ
HRNIC0AIcYcyUuL58xcfYcuaLDbkZfDH33gIm8mtkue2rjT+r1x1bIYV2amTyiQlIZb5KeZ2
3YG0AIQQU2DZwhS8j67izJmg6ZPAAAIjn1+E1sH0i9LLF6bw0q71vHu0DHVoiB/82804ZDXQ
uyccDtPd3W0cj46OUldXx8DA2NBDXddpbW2lubl52mZXhsIRGtp6GB4Nmb5aolUFQxGqm7oI
jAQtU0aBkSBX+ocZCYYtMfNW3FpJ1eS5EWOjlMwzvn3nI/nZrMhKJTvd/HXAdF2fHS2Ajo4O
Dh8+TCQS4fnnn0fXdfbs2UNeXh579+7l61//OvX19TQ3N6OqKn6/n/Xr109pDMOjIf7858eo
rm9EHWxlJL6CF3fmm34Bz0oCI0Fe/pej1F5qxj7QTMBTxu8+tc7UMrrU3stfvHqMvqY6jjdq
/PGLj7Pc5KGp4tbmzvFQc/nzeQBmrksEY3M1/vCVIvp7urAF2mkKH+evvrPV1Jga2npmRwKI
i4vj6aef5oMPPgCgv7+fxMRE8vPzUVWVhoYGamtreeqpp1BVld27d7N+/XrC4bAxA1jX9Tua
DHbkTKMxMUXXYf9HF3hsbRapJl8sg7HW0ejoKCMj5u5PcPh0A7UtV4zjgyX1bF+bxYJU8/pK
f3X4HFf6h7EDvQMj/PLQOf7LNx40LZ6JIpGI6Z/ZRKOjo4RCIUvE1NI5eUOY1o5+U+N698QF
+gKjxuioTxv8lF9oJS8r2bSYXjv86exIALGxsZOWchgcHCQhYawJFh8fT3t7O7qu43CMbdI8
vvSzqqqoqoqu60QiEVT19otLu6q3TQcUu4rLZX5/qaqqxMTEmB6Lpl/nTN9mNzWusHb1sW56
OY2z280tm6vFxMTgcDgsEVPoqg8uFNHMrUfX2RBGw2Z6TLPmGsBE8fHx9PaOLc/a29tLXFwc
NpuNUCiEpmnXbP4ysSVwuzavXsi85M+2zlPGZr1mWGAUgJU8cn/2pBmTG5bPN33N9F2blxmz
k11Ola9tXm5qPCI6W9fmTD6+P9ucQD7z2IZFk1ZMTUlws27ZPPMCAr62efnsaAG0tLRw+fJl
WlpaKCkpYe3atQwODnLq1Cnq6up47rnnUBSF999/H1VVWbp06tcxSfC6+NH3t3OkpJKOJhcv
PrdR+v+vMiculr976TEOn/yUziYH3/43m0wvo/ty5/KT3/sSb+weYPvWLaxaZu6yCyI6Fyb0
/wPUNHff4JF3R3vXALr++QS5/sAIA0OjxLljbvq86bRm8dzZkQCSkpJwuVzGD7vdbmfXrl20
t7dz3333ERMTw/Lly0lOTkbTNObOnTvp+VO1GFyCx8XGFQs42ddsiSFgVpTodbFlTRYfDTSb
vqTwuPkpcWSnJ5Ka6DY9IYnoXL0UxZDJw0Cv3hAmGNZo7Rpg+ULzEoCiKLMjAbjdbtzuyRdb
nU4nWVlZxrGiKKSlpV33+eNdQ3dyDUAIcfd8uXAp1U1d6IxtxmL26qRZV23/6lBtpq/hBLNo
HsCdcDgc2C2we48QIjoFKzL4by89xoblGfzZCw/zQF6GqfFsui+T7etycMWoeGOd/GDXhkl7
hJtFTmmjEA6Hr7kwLISwLkVRyJ0/h0UZc5ifEmd6153dZuP3nn6Ax1anUXP+LI9edZHaLNIC
iILdbjeGht6J/sAIJyqb8V0ZvGaYmhD3svbuAQ6cqOVSew8jJu+aZlUXW3s4WFJP9eVuegbM
3elunLQA7pL+wCh/+EoRPr8f+2Ar/bEn+CMLjHIR4k61dw/w+//rEMP93dgCPto5xl9/91Gp
2xPUt17hD18pQh/txxZo59I/HuaV338Su8n7XUgLIAqRSOSOu4A+qWnFd2Vsgwp0OFHZYvp+
t0JMhcOlDZPWu69q7KRuwoxuMVZG2oR1pPw9ASou+k2MaIwkgCioqnrHXUBel3Pya9ptxDil
ASbufVdfzLQpEOd23uDRs9P1xvvHxZpfRpIAojAVK0CuXz6fzasXoqDgUG28uDMfj8sxBdEJ
Ya4dGxaxNDMZUEBReOaRFcyzwBBHK9lZsHjSHsCFKxd8VmbmklPQKIyPArqTeQCq3cYf/FYh
T23I4NOzZaaPSxZiqsTGOPjR97dzsqwKf3MdT5u8AbsVJcXH8sofPMmRU5/ia7rA87/zkNkh
AdICiMpUzQNQFIV4T4zpuyUJMdVsikL2vESZ4X4Tqt3GypxUS4z/HycJQAghZilJAEIIMUtJ
AohCKBS64+WghRDCaiQBREHWAhJCzESSAIQQYpaSBCCEELOUzAMQQohppus6xecuc666nj5f
B3nN3TIRTAghZoPzjZ389zdPwugAtkA7df+vmH/+T18xfdc76QKKgowCEkLciSZfHxNXlOkd
GKFn0PzFICUBREFGAQkh7sSC1MlrI7liVFIS3Dd49N0jCUAIIabZxbaeScfDo2HaugZMiuZz
kgCEEGKaxV+1HLTdpuCR5aCFEGLm25Kfxbpl81AUBdVu45tfWkNSXKzZYckoICGEmG5O1c6f
fnMLZ6vmc6n2PLs2Lzc7JEBaAEIIcVcoikLaHA82m3WWg5/VCWBkZGTS8M6+vj56enqmZAcw
IYSwulnbBXT06FFKS0t54YUXSElJoba2lnPnzmG321myZAmrVq0yO0QhhJhWszYBrFy5EuWz
nbl0XaeyspKnnnoKVVV56623WLVqFbquG60BXdfRNO2O33f8NafitaaK1WLSNM1S8cDnn78V
Y7IK+dxuzWplNGsTQGpq6qRjTdNwOseGZdlsNuO28Q9qqirR+P7CoVDojl9rqmiaRjgctkRM
OtDYfoXh0aAl4hmnaRqRSMRyMVkpnnA4bMkyskrdBohEIpb63GZtArieSCSCzWYzfujtdjt2
u934sGJi7nwvz/FZxVPxWlPFbrfjcDhMj2kkGOZvf/kR52oacAZa0ZNr+MaO1UZLzUxWKaOJ
rFaPnE4nqqpaKia73Y7T6bRMTFb7/s/KBBCJRKirq8Pn8+FyuQBYvHgxR44cwel0snDhwkmP
V1VV1gK6Cw6XNlBe5wNNJxiO8NaxarbkZ5E1N9Hs0ISYkWZlAoCxTLxu3TpgrMtnzZo1NDQ0
EIlEWLJkyaTHjjfbxPTq7Bu65rau3iFJAEJMk1mZAOx2O4sWLbrm9uvdBmMJQoaGTr9H8rN4
72Qt492jc+d4uG/RXHODEmIGm5UJ4IuaOBpITJ+ceXP4r995lH2/OUOwO8T3v/0oTlVWYRVi
uszqiWDCepYtTOHFJ/JZmZNGaqLH7HCEmNEkAURBURRLjEQRQoipJAkgCjabTRKAEGLGkQQQ
hUgkItcAhBAzjiSAKMjZ/+zWMzCM78ogA0OjciIgbttoMExDWw+BkSCaZo16JKOAojBxdrCY
XWqbu/nLV48TaG3g4yadP/rWl1gtQ1PFFzQ8GuIvfn6M6rpLOIZ9ROZ8yvM7VpsdlrQAoiFd
QLPX28eq6B8aBWBgKMjuo1UmRyTuRSVVrVQ1dQEQ0XT2Hq+mLzBiclSSAIS4qavzvpwIiNuh
Xa/eWKAqSQKIgt1un7HXASIRjeHR0DU/dGLM0w/n4f1s825PrJNnH15hckTiXlS4cgFLM5MB
sNkUntq0jASvy+So5BrArNbZG+DHvzpBY+UFyv1O/uD57cxLjjM7LEtZvjCF//nvH+eNNwfZ
tnULy6T/X9wmh2qb8H/zZ7i3dw9ICyAaM7XZ//ODFdRc7iYU1qhrvcLP3is3OyRLSklwMz8l
jkSva8a2BMX0+uD0Rc5f6gRA03TeOlpFS0e/qTH93wNnJAFEY3yji5mmtWtg8nHnwA0eKYS4
E77uwUnHmq7j7w2YFM2Yls5+SQDRGN/EYabZen+28X8F2Lo2+0YPFULcgQdXZTKx8TjH62Jl
duqNn3AXbFuXK9cAZrMvP7gUb6yT9w/4eXjL/TyxJc/skISYkVYvmst//p2HePdoGbbBMN/9
1iO4nOb+/D69JU8SwGxmt9nYti6XvqZMClZkoNrNbxB29w1xuLSBzo4+RoJh078kmqZz7GwT
H33ajDoni52paZYoJ3HvSYpzkeiJIRJ2EOc2f0tI1W6TBCCso2dgmD/6x8N0dXViH2im97WP
+NNvPYzNxAuve45X84tD57D39FB/4Aw9I3a++fga0+IR96aLrVf443/+EG2kH1ugnab/8yH/
8B+eMP1kQk5lohAOh2UpiLugrLadrgnbQp6p9dHVe+02kXfTrz+pv+mxENH4zZlLRCas/9Pe
PUhlQ4eJEY2RBBAFu92OzSZFNd0SPZMnxjhUG26Xw6RoxiTFx046To53mxSJuJddXY8A5sSZ
PxFMftWiIGO/7461S+fxeMFiYhx23C4H339qPR6TE8B3nlxrfFETvS6++5W1psYj7k2PFyxm
WWYyiqKg2m189aFlZKUnmh2WXAMQ1mGzKXz/qXV8KT+dM6UlbF+fa3ZILM1M5n//xyf5xeuD
7Ny+lYWZMhNYfHEel5O//d3tnKqopvliNb/1xP1mhwRIC0BYjKIoeGOdpl74vZrb5SAt0YPT
MfPmgoi7x2ZTyE5PNH1k20SSAIQQ4i7QdZ3ewRE0XbfM8jLWSUVCCDFDhcIR/v6Nk5wqr8Y5
6sc5dwVPFi41OyxpAQghxHT7pLqVk+dbAAiHNX5+8CyDw0GTo5IWgCEcDlNaWgrAxo0bp+U9
9hyv5mBxBc6hNjJXtLF+2fxpeZ9oDQyN8i/vV1B2ooaGQBzf3vUQc+KuHa52N+0truH94xU4
hlrIXNHGhuXmllF/YJRX3imlqrSGyu4YfvD1R0hOMHcoaEW9j18WfUp75WUSPqzktx9dafpI
tXdP1PLe0TLcoU4W3dfJCpPXuRkcCvKLQ2c5dbKOTubyra8UGvs6mCEwEpp0HIpECIYiYOLX
rXdwBPvLL7/8snkhWMeFCxcIh8P09vayePHia+7XNO2WcwE0TSMUChGJRK75d6yikX/af5qh
wCCBvi6K6wJsvT8Lh1257uNtNtu0f6n/Yc9pjlY0Eu7309gL7T2jbF6TNa3veTPHzjbxyr5S
AkMBhnq7+Kh+iG3rck2dC/DjN05yqqqF0EAHrf0KFzsCbFubM+3vGwwGr1svegeG+ZN/Ooy/
ewCtv5VzPoUEbwxZc+Ov+3hFUaakHt2sbpecb+anb58iMNhPX08XJy8G2LYuG5uCaXX7lXdK
KSptINTvo/4K9A1FKFixYFrf82Ya2nr5pKYVJRJECQ2ixybz1c3LiY0xr27/6LWPpQUwLi8v
j8HBQT7++GPjtonLQOu6TjgcvulrlJeX85Of/OSG909a/eNKNb/3/b03fOzPfvYzHI7prRzl
te2Tj+t8jIyYt09p1SX/pOOIplN9yc+G5fNMighqPtvHddyFpq67UkYvvvjiTZcgH69L9oHL
/Pwn7/DzGzzupZdeorCw8I7jOX36ND/96U9vGQ9AqPs83/v27hs+9tVXX532BHCqquWa4++N
mLeER83lybN+dR1qGv2sXZJuUkRQc7lLEsDNqKqKqqrGUhBO582bkGvWrOFHP/rRde8rqWrl
V7+pnHTbn73wMIk32BbO6/VO+5dk8YIkyut8nx9nzMHlMm92Ylb6nGtuy56fbGpMmWnxnG/s
NI4XpMXflXj+5m/+5rojRfqHRvnLV48Tjny+NMnXNuexZc3C675OamrqlMS7du3aG9bt8jof
//rBWePYqdr5sxcevmHLzeWa/o118rJSKLvQPuF4asrhdmWlJwGNxrGiQPY8k+t2arwkgGhE
uxeA2+0mJ+f63QMZmQvpGHHyYVkDHpeD3952H/mrlpjad/u9r6zjf+w+Rf0VWLIgiZd2bTAt
FoDH1udysa2HD09+iifWydefvJ8FqeZuUfmDr23g7147QUsPZKYl8O+eLrgr75udnX3D+777
rINfHDrHwNAom1cv5LefeICYaR5b7vF4bli3Mxdm0THsoKi0gTi3k289ns/KvOxpjedWvveV
dfxD6BOqr1SzOjeN75k8g/vxBxbR0NbD0U8+xRvr5Lkvr2N+irl1+4dPP4CiW2VAqskqKipo
bm5meHiYxMREduzYYdwXCoXQNI2YmDtbwlXXdcIRzZgObgWaprNnzx4eeugh0tPNn+Wq6zrt
Pj8nPv6YZ599xuxwgLEy2rt3Lw8+WMi8eeZ1R00Ujmjouo5qn/7+9GiM122bomC3St3Wdd58
4022b99OSkqy2eGg6zrNLa2cKStj166vmh0OIKOADPn5+eTn51/3PofDccv+/2goimKJzaAn
stkUbDYFC/yGABjJ0WazSEBMLCPrxGSVE4hxlqzbijXrtlXiAZkHEJXx0Q9CCDGTSAKIwkzd
E1gIMbtJAohCJBKRDWGEEDOOJIAoTNVkGiGEsBJJAFG4GzMXhRDibpMEEAW5CCyEmIkkAURB
LgILIWYiSQBCCDFLSQKIgnQBCSFmIkkAUZAuICHETCQJQAghZilJAEIIMUtJAoiCXAMQQsxE
kgCioKqqXAMQQsw4kgCiILOAhRAzkSQAIYSYpSQBCCHELCUJIAqya6YQYiaSBBAF2Q9ACDET
SQKIgqqq2GxSVEKImUV+1YS4hZ6BYS77+xgcDkp3oLhtwVCEyksdBEZCaJo16pFqdgBCWNm5
i37++hfFBP1NnLj8G37/G49RsCLD7LDEPWZgaJQ/+ecPaW5pxRZop8eZxQ+/tsHssKQFIMTN
/OsHZxkOhgEYCYZ59dcVJkck7kW/LrnI5Y5+4/jQ6Ys0tveaGNEYSQBC3MTQSGjy8WjoBo8U
4sauV2+sUJckAQhxE888nIfts5ngdpvCsw+vMDkicS96/IFFxLmdxvGqnFTyslJMjGiMXAMQ
4ia2rctlbpKX3buvsGNbIQ+uXWJ2SOIeNDfJy9//cAfvHT3DUJeLb39ziyWWmJlVCUDXdUpK
SmhrayM7O5u1a9ca90UiEc6cOYOmaRQUFJgYpbCaVTlp1C1JZ1GLRBftAAAONklEQVRGkiW+
tOLeNHeOl8cLFnP6dA+xMQ6zwwFmWQLo7u6ms7OTr371q+zdu5elS5fi9XoBqK2tRdM0enp6
jMdrmmZMANM0jVDI/D676aBpGpFIxDJ/XzgctlQ8MFZG4XDYUjGJW7Pa5xYOhy31WzKrEoDf
72fx4sXY7XZycnLo7Ow0EkBeXh6Dg4N8/PHHk54z8Yxvpp/9WenvUxTFUvGANWMSt2alz208
DqvEM6sSwETRTOiZOPtX13VUdWYWl81mw263W+bvG595bZV4wHplJKJjtc/Nbrdbqm7PqlFA
c+fOpaGhAV3XaWxsJDU1laGhIVnnRwgxK82qBJCcnExSUhJvvfUWOTk5uN1u3nzzTcLhMBUV
FRw5coSenh4OHTpkdqhCCDHtrNEOuUsURaGwsNA47uvro7CwEKfTSX5+Pvn5+SZGJ4QQd9es
SgBXS0hIICEhwewwhBDCFLOqC0gIIcTnJAEIIcQsJQlACCFmKUkAQggxS83qi8BfVDgcNjuE
aZGWloaqqpb5++x2O2lpaZaJB6xXRiI66enp2O12y3xuDofDUnVb0WWPu6hEIhGzQ5hE13V0
XbfUXsWapllq2r2UUXQikQh2u93sMAxW/NxmahlJCyBKVlsKYnwBNytVSk3TsNlslvniji8E
JmV0c1YsI6vV7ZlaRtaphUIIIe4qSQBRslKTHay1wuE4K8ZjpTNtwHLxgPVismLdnqllJNcA
hBBilrK//PLLL5sdxL2kt7eX2tpaurq6cDgcuFwuAFpaWjh//jwOhwOv18vg4CA1NTV0d3cT
ExNDTEwMPT091NXVEQgE8Hg82O12hoeHqa6uxu/309XVRVJSEjabjaamJkZHR439Cm6Xruv4
fD7i4uKAsb7Djo4OvF4v7e3txu1XP66/v58LFy7g9/vp7e0lKWnqdsO6cuUKsbGxwFi5eb1e
FEWhr6+PYDCIqqpUV1fT2NhIYmIiTqeT7u5u+vv78Xq9hMNhuru78Xg8Ub3fwMAALS0tJCUl
ATAyMkJ9fT0pKWN7snZ2dtLR0cGcOXOAsc2B2traCAaDRnn4/X6qqqoIhUIkJCTg9/tpaGjA
7/czMjJCYmIiPp8Pr9eLz+fD7XbftLyam5sJh8O43W7j9QcGBoiLiyMYDHL27Fl8Ph/JycnY
7Xba2toIh8PExsYyMjJi/E2tra34/X46OztJTEzkwoUL+Hw+NE3D6/VeN85oXLx4Ebfbjaqq
9PT0oCgKqqoyMDBAQ0MDKSkpKIpCe3s7oVCI2NhYRkdH6e/vp7W1lZaWFvx+P36/n8TEROrr
62lra8Pv9xtlU1lZic/nIz4+Hofj9nbIGh0dpampiTlz5qAoivEZdHZ2EhMTg81mo6enh/Pn
zxMMBklISKC6upr29nb8fj8ejwen03nrN7oFXdeprq6eVPaKotDT00Nra6tR95qbm2lqamJw
cJD4+HhsNptRJpqmUVtbS2NjI7GxscZ35FbvW1lZaZR1d3c3qampDAwMUFFRwcDAAMnJyWia
Nmn/k/b2drxer3QBfVH19fUMDg7icDh49913CQQCNDQ0cObMGbKzszl27Bjt7e20tLTQ0dGB
zWbjnXfeIRAIcOHCBQYHB7ly5Qqvv/46wWCQ7u5umpqa8Hq9RqUBOHHiBCdOnJiSmCduchOJ
RDh16tQ1t+u6zsmTJ43jS5cu0dvbi9frveWP2RdVXV1t/L+jo4Py8nJ0XefQoUPYbDY+/PBD
hoaGSEtL4+233yYSiVBZWcmePXsIh8MMDw9TXl4e9fs1NTWxZ88eRkdHASgvL+fgwYPG/SdO
nODkyZPGsuCnTp3C7XZTV1dHSUkJfX19HD9+nHnz5tHS0kIwGKS8vBy73Y7X6zVOAsbLs6Sk
5JbD/E6ePMmxY8eM4w8//JCSkhJ0Xeedd97B7Xbjcrl49913ja1MDx48iKZpdHd3c+HCBWJj
YwkGg9TX1xuJ5JNPPsHtdlNWVsb58+cpKyszTkrG44zGkSNHOHr0KDD2eY3vlFdeXk5xcTHB
YBCAsrIy9u/fj67r9Pb2Ul1dTWxsrPGD6PF40DSNsrIyo47b7XYOHTqE0+kkNjaWpqamqOO6
Wk9PD6+99hp+vx/A+M5UVFQwNDREV1cXBw8eJDU1lb6+PnRdp7S0dFIsU0HXdaPsz5w5w/nz
54Gxz+Pjjz82dgA7ffo0LpeL3t5eDhw4AHxeX06fPk1vby/JyclcvHgx6vf2eDy0tbXR29uL
2+1mdHSUffv2kZ6eTm9vL8ePHycUCnH69GnjOePlZJ1hLfeQtLQ05s+fj8fjMTLw9u3b8Xg8
7Nixg5KSErKzs0lPT2fZsmX4fD76+/tRFIXMzEwyMzNJTEykvLycjIwMkpKSyMzMBMb6Gru7
u0lLSyMQCDA0NGR8ue+21NRUMjMzp7U/Nj8/n9dffx2Px0N6ejoul4u+vj4ee+wx4wyzubkZ
gA0bNnDy5MnbWrV11apVVFVVkZ+fT1tbGwsXLgQ+334yMzOT9vZ2MjIycLvdLFq0iPnz5/PB
Bx+wdOlSIpEISUlJLFiwwLi2MH/+/LGzqNvoH1ZVlZiYGIaHhwkGgyQmJhIKhejr68Pr9bJs
2TIURaGuro6hoSEcDgfJycnU1dUZZ3ELFizA6XQyPDxMbm4umqYRFxfHokWLjPqlKAoZGRnE
xsZ+oTiTkpIIBoPXbJHa1dVFYWEhtbW13HfffaiqSm5uLlVVVUaLKiMjA4/HQ1dXF4sWLSIU
CuF2u406rqoqo6OjxMTEkJWVdcc/whs3buSjjz7imWeeuea+M2fOsGPHDlJSUsjKykLTNDwe
z6RYpsrVZT++y+Dy5ctpaWkhJycHVVXJzs5GVVXq6+snPT8YDBIbG0tmZibZ2dlRvaeiKOTm
5hqt4+zsbGpqali1ahVZWVksXLiQN99884bPlxbAbSgpKWHPnj3ouk5sbKzRNAdwuVxGti8t
LeX1118nEAiQlpY26TXGz0gAKisrKSoq4vjx4+i6TkVFBTk5OaSnp1NXV3d3/7gJSktLKSoq
oqSkZNrew2azsXHjRg4ePMgDDzyApmk4HA4j6cTHxzM0NARATk4Ofr/fOP4isrKyuHz5Mn19
fUZXD4y16NLT08nMzOTTTz8FxrqE9u7dy1tvvcUDDzxAUlISBQUFvPfeexw4cIBIJEI4HObY
sWMUFRVNatF8EXl5edTU1FBZWcnq1auBse4pj8dj/P0ej4eRkREA1q1bR0VFxU03MGpra+Pw
4cMUFRWxcuVKIpEIR44cua04N2/eTHFxsXHc3d2N0+kkIyODqqoq4/a1a9dy7ty5m7Z62tra
KCoqoqioiP7+fnbu3ElDQwOvvfaakeBvl9vtJjU19botiWAweM0JVEtLixHL4ODgHb33RFeX
fWtrK4mJiWRkZHD+/Hl0XWd4eJiDBw/yy1/+kry8vEnPf/DBBwmHw/zqV78y6uLtCAQCxirH
iqLgcDhuOI9JWgC3YdOmTWRnZ3Pq1CmamprweDxcuXKFlJQUurq6jH7jNWvW0Nvbi8vluubs
q7q62jgLXbNmDRs3bgTGmpKtra0oimJsUr969WpTRkVs3LiRJUuWTPv7ZGRksHjxYmJiYohE
IoyMjBjj5dva2li9ejWdnZ3A2JfkxIkTUff/j1NVFbfbzSeffMKaNWv46KOPAKipqcHj8dDQ
0EB7ezuRSITk5GQKCgo4evQoiYmJ6LpOTk4Oubm5HDlyhPb2dlRVZcuWLcZnfTsyMzOprKwE
YP369cBYwuvq6jK2LO3p6TH+VlVVWbFiBWfPnjXOtq+WmppKQUEBsbGxqKqK3W5n27Ztt9WK
TExMxO1209bWRk5OjvGjf/bsWXp7e40uNZvNxv3338+ZM2eMvu6rLViwgCeeeAL4fBLT9u3b
GRkZ4d133zXOyG/Xpk2b2L179zX9+QkJCfh8PnJzc43bFi5caMQyla4u+wMHDhATE0NdXR1t
bW3ouo7L5WLTpk38+te/Zt68eZOeb7PZKCwspKCggNdff904KbidOBobG8nNzSUSiTA6OorL
5WJkZARd19E0zahfkgBuw/Hjx6moqKC/v5/Vq1czZ84c9u/fz7x58/D5fDzzzDO0tLTgcDh4
+OGHOXr0KCdPnsRms3HkyBE8Hg8ej4eCggJaW1spKyvD5/PhdDpZs2YNGRkZPProo+i6zt69
exkaGqKoqIhdu3axf/9+du7c+YUumvX19bFv3z4cDgePPfaYcft4X6Gqqjz66KNcunSJffv2
kZaWhtfrpbi4mPPnz+P1etm6deuU9Zf6fD727dtHfHw8jzzyyKT77HY7K1as4I033iAuLo5I
JEJaWho1NTUoisK8efMIh8PGj88XsXz5cvbv38/27duBsb9//IdIURSOHDmC3+83une2bdvG
7t272bp1K8XFxSQlJdHd3U1hYSHhcJiDBw8aZ8QbNmww3mdoaIgDBw6gqiqPPPIIxcXFPPnk
k+zZs4enn37aeJzD4TCuI9hsNhRFwe12k5yczJ49e4Cx7saYmBjjBGDlypUUFxffMAE4nc5J
SSkSifD++++jqirz5883nv/4449fE89E4+9XWFjIj3/8YzZt2oTf7+fZZ5/FZrORmprKhQsX
jMcvXbqU4uLiSa2riS5fvsy+ffuAsSR++vRpIpEIwWCQRYsW3fyDuwVFUbDb7Sxbtozjx49P
um/dunXs3buXqqoqdF3nySefpLGx0YjloYceumFZflETy17XdQKBAF/+8peN+y5fvoyiKMTH
x/PMM8/w5ptvsnPnTuP5p06dor293Vgu4ouYeIKYkZFBaWkp7733Hj09Paxfvx673Y7H4+G9
994jEAiwdOlSAP4/sgbMUYCFWsQAAAAASUVORK5CYII=
</thumbnail>
</thumbnails>
</workbook>