We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi,
Thank you for publishing the code. I encountered an issue when trying to run it.
#modifying the last layer idx = ga.get_kind_blade_indices("even") model = InceptionV3(classifier_activation = None, weights = "imagenet", input_tensor=Input(shape=(224, 224, 3))) x2 = Dropout(0.3)(model.layers[-2].output) x2 = Reshape((-1, 8))(x2) x2 = TensorToGeometric(ga, blade_indices=idx)(x2) x2 = GeometricSandwichProductDense( ga, units=128, activation = "relu", blade_indices_kernel=idx, blade_indices_bias=idx)(x2) x2 = GeometricSandwichProductDense( ga, units=64, activation = "relu", blade_indices_kernel=idx, blade_indices_bias=idx)(x2) x2 = GeometricSandwichProductDense( ga, units=1, activation = "tanh", blade_indices_kernel=idx, blade_indices_bias=idx)(x2) x2 = GeometricToTensor(ga, blade_indices=idx)(x2) outputs2 = Flatten()(x2) Model1 = tf.keras.Model(inputs=model.input, outputs=outputs2) Model1.summary() CGAPoseNet = Model1
TypeError Traceback (most recent call last) Cell In[5], line 10 8 x2 = Reshape((-1, 8))(x2) 9 x2 = TensorToGeometric(ga, blade_indices=idx)(x2) ---> 10 x2 = GeometricSandwichProductDense( 11 ga, units=128, activation = "relu", 12 blade_indices_kernel=idx, 13 blade_indices_bias=idx)(x2) 14 x2 = GeometricSandwichProductDense( 15 ga, units=64, activation = "relu", 16 blade_indices_kernel=idx, 17 blade_indices_bias=idx)(x2) 18 outputs2 = GeometricSandwichProductDense( 19 ga, units=1, activation = "tanh", 20 blade_indices_kernel=idx, 21 blade_indices_bias=idx)(x2) File ~/miniconda3/envs/tf/lib/python3.11/site-packages/keras/src/utils/traceback_utils.py:122, in filter_traceback..error_handler(*args, **kwargs) 119 filtered_tb = _process_traceback_frames(e.traceback) 120 # To get the full stack trace, call: 121 # keras.config.disable_traceback_filtering() --> 122 raise e.with_traceback(filtered_tb) from None 123 finally: 124 del filtered_tb File ~/miniconda3/envs/tf/lib/python3.11/site-packages/tfga/layers.py:189, in GeometricProductDense.build(self, input_shape) 183 self.num_input_units = input_shape[-2] 184 shape_kernel = [ 185 self.units, 186 self.num_input_units, 187 self.blade_indices_kernel.shape[0], 188 ] --> 189 self.kernel = self.add_weight( 190 "kernel", 191 shape=shape_kernel, 192 initializer=self.kernel_initializer, 193 regularizer=self.kernel_regularizer, 194 constraint=self.kernel_constraint, 195 dtype=self.dtype, 196 trainable=True, 197 ) 198 if self.use_bias: 199 shape_bias = [self.units, self.blade_indices_bias.shape[0]] TypeError: Layer.add_weight() got multiple values for argument 'shape'
Is this issue caused by an incompatibility between the versions of tf and tfga?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi,
Thank you for publishing the code. I encountered an issue when trying to run it.
Is this issue caused by an incompatibility between the versions of tf and tfga?
The text was updated successfully, but these errors were encountered: