-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.js
61 lines (47 loc) · 1.68 KB
/
trainer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// Usage: node trainer.js --epochs 5 --model_save_path trained_model
const tf = require('@tensorflow/tfjs-node');
const argparse = require('argparse');
const data = require('./data');
const model = require('./model');
async function run(epochs, batchSize, modelSavePath) {
// Load MNIST dataset
await data.loadData();
const {images: trainImages, labels: trainLabels} = data.getTrainData();
model.summary();
const validationSplit = 0.15;
// Train the model with labeled images
await model.fit(trainImages, trainLabels, {
epochs,
batchSize,
validationSplit
});
// Evaluate the trained model with a labeled test dataset
const {images: testImages, labels: testLabels} = data.getTestData();
const evalOutput = model.evaluate(testImages, testLabels);
console.log(`\nEvaluation result:\n` + ` Loss = ${evalOutput[0].dataSync()[0].toFixed(3)}; `+ `Accuracy = ${evalOutput[1].dataSync()[0].toFixed(3)}`);
// Save the trained model to disk
if (modelSavePath != null) {
await model.save(`file://${modelSavePath}`);
console.log(`Saved model to path: ${modelSavePath}`);
}
}
const parser = new argparse.ArgumentParser({
description: 'TensorFlow.js-Node MNIST Example.',
addHelp: true
});
parser.addArgument('--epochs', {
type: 'int',
defaultValue: 20,
help: 'Number of epochs to train the model for.'
});
parser.addArgument('--batch_size', {
type: 'int',
defaultValue: 128,
help: 'Batch size to be used during model training.'
})
parser.addArgument('--model_save_path', {
type: 'string',
help: 'Path to which the model will be saved after training.'
});
const args = parser.parseArgs();
run(args.epochs, args.batch_size, args.model_save_path);