-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFashionNet.py
148 lines (114 loc) · 4.85 KB
/
FashionNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import gzip
from tqdm import tqdm
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib import style
from CNN.modules import *
np.random.seed(2)
style.use("seaborn-darkgrid")
### LOAD DATA ###
train_f = gzip.GzipFile("FashionMNIST/fashion-mnist_train.npy.gz", "r")
train_data = np.load(train_f)
train_f.close()
test_f = gzip.GzipFile("FashionMNIST/fashion-mnist_test.npy.gz", "r")
test_data = np.load(test_f)
test_f.close()
np.random.shuffle(train_data), np.random.shuffle(test_data)
X_train, y_train = train_data[:,1:].reshape(-1, 1, 28, 28), train_data[:,0]
X_test, y_test = test_data[:,1:].reshape(-1, 1, 28, 28), test_data[:,0]
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
### CREATE MODEL-CLASS ###
class Net():
def __init__(self):
# INPUT : (1, 28, 28)
self.conv1 = Conv(1, 32, 3, padding=1)
pool1 = MaxPool(2, 2)
relu1 = LeakyReLU(1e-4)
# SHAPE : (32, 14, 14)
self.conv2 = Conv(32, 32, 3, padding=1)
pool2 = MaxPool(2, 2)
relu2 = LeakyReLU(1e-4)
# SHAPE : (32, 7, 7)
self.linear3 = Linear(32*7*7, 128)
relu3 = LeakyReLU(1e-4)
self.linear4 = Linear(128, 10)
softmax4 = Softmax(axis=1)
self.model = (self.conv1, pool1, relu1,
self.conv2, pool2, relu2,
self.linear3, relu3,
self.linear4, softmax4)
self.criterion = CrossEntropyLoss()
def forward(self, x, y=None):
for layer in self.model:
x = layer(x)
if isinstance(y, np.ndarray):
loss = self.criterion(x, y)
return x, loss
else:
return x
def backward(self):
grad = self.criterion.gradient()
for layer in reversed(self.model):
grad = layer.gradient(grad)
return grad
def parameters(self):
layers = []
for layer in self.model:
if hasattr(layer, "weight"):
layers.append(layer)
return layers
### DEFINE TRAIN FUNCTION ###
def train(X_batch, y_batch, model, optimizer=None, validate=False):
x, loss = model.forward(X_batch, y_batch)
if not validate:
grad = model.backward()
optimizer.update()
correct = [1 if x==y else 0 for x, y in zip(np.argmax(x, axis=1), y_batch)]
acc = sum(correct)/X_batch.shape[0]
return loss, acc
### DEFINE TRAININGS LOOP ###
def train_loop(X_train, y_train, X_test, y_test,
model, optimizer, epochs, batch_size):
train_losses, train_accs, test_losses, test_accs = [], [], [], []
### LIVE PLOTTING ###
fig, axs = plt.subplots(1, 2, figsize=(8,4), sharex=True)
fig.tight_layout()
def plot_acc_loss(j):
axs[0].clear(), axs[1].clear()
axs[0].plot(train_losses, label="Train Loss")
axs[0].plot(test_losses, label="Test Loss")
axs[0].legend()
axs[1].plot(train_accs, label="Train Accs")
axs[1].plot(test_accs, label="Test Accs")
axs[1].legend()
ani = FuncAnimation(fig, plot_acc_loss, interval=1000)
for e in range(epochs):
print(f"\n\t####### EPOCH : {e+1} #######")
for batch in tqdm(range(0, X_train.shape[0], batch_size)):
X_train_batch = X_train[batch:batch + batch_size]
y_train_batch = y_train[batch:batch + batch_size]
X_train_batch = (X_train_batch/255-.5)/.5 # normalize between [-1, 1]
train_loss, train_acc = train(X_train_batch, y_train_batch, \
model, optimizer)
test_idx = np.random.randint(0, X_test.shape[0]-batch_size)
X_test_batch = X_test[test_idx:test_idx + 4*batch_size]
y_test_batch = y_test[test_idx:test_idx + 4*batch_size]
X_test_batch = (X_test_batch/255-.5)/.5 # normalize between [-1, 1]
test_loss, test_acc = train(X_test_batch, y_test_batch,\
model, validate=True)
train_losses.append(train_loss)
train_accs.append(train_acc)
test_losses.append(test_loss)
test_accs.append(test_acc)
plt.pause(.001)
return model, train_losses, train_accs, test_losses, test_accs
EPOCHS, BATCH_SIZE, LEARNING_RATE = 1, 128, 1e-4
MODEL = Net()
OPTIMIZER = Adam(MODEL.parameters(), LEARNING_RATE)
model, train_losses, train_accs, test_losses, test_accs =\
train_loop(X_train, y_train, X_test, y_test,
MODEL, OPTIMIZER, EPOCHS, BATCH_SIZE)
print(f"Train Loss: {sum(train_losses[-10:])/10}\tTrain Accuracy: {sum(train_accs[-10:])/10}\
\nTest Loss: {sum(test_losses[-10:])/10}\tTrain Accuracy: {sum(test_accs[-10:])/10}")
plt.show()