-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.c
198 lines (185 loc) · 5.66 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
struct node{
int data;
struct node *left;
struct node *right;
};
struct node *tree = NULL; // any changes in any function made affect the global tree variable.
struct node *tree_insert(int n){
struct node *new_node, *ptr, *preptr; // ptr is used to make preptr reach correct location
new_node = (struct node *)malloc(sizeof(struct node));
new_node->data = n;
new_node->left = NULL;
new_node->right = NULL;
ptr = tree;
if (tree == NULL)
tree = new_node;
while(ptr != NULL){
preptr = ptr;
if(n < ptr->data)
ptr = ptr->left;
else
ptr = ptr->right;
}
if(n < preptr->data)
preptr->left = new_node;
else
preptr->right = new_node;
return tree;
}
int level_counter = 0;
struct node *search(struct node *tree, int val){
if (tree == NULL || tree->data == val)
return tree;
else if(val < tree->data)
search(tree->left, val);
else
search(tree->right, val);
level_counter++;
}
void inorder(struct node *tree){
if (tree != NULL){
inorder(tree->left);
printf("\t%d", tree->data);
inorder(tree->right);
}
}
void preorder(struct node *tree){
if (tree != NULL){
printf("\t%d", tree->data);
preorder(tree->left);
preorder(tree->right);
}
}
void postorder(struct node *tree){
if (tree != NULL){
postorder(tree->left);
postorder(tree->right);
printf("\t%d", tree->data);
}
}
int total_nodes(struct node *tree){
if (tree == NULL)
return 0; // return a number whenever doing recursion of this type
else
return (total_nodes(tree->left) + total_nodes(tree->right) + 1);
}
int internal_nodes(struct node *tree){
if (tree == NULL)
return 0;
else if (tree->left == NULL && tree->right == NULL)
return 0;
else
return internal_nodes(tree->left) + internal_nodes(tree->right) + 1;
}
int external_nodes(struct node *tree){
if (tree == NULL)
return 0;
else if (tree->left == NULL && tree->right == NULL)
return 1;
else
return external_nodes(tree->left) + external_nodes(tree->right);
}
struct node *mirror_tree(struct node *tree){
struct node *temp;
if (tree != NULL){
mirror_tree(tree->left);
mirror_tree(tree->right);
temp = tree->left;
tree->left = tree->right;
tree->right = temp;
}
return tree;
}
struct node *smallest_node(struct node *tree){ // smallest node of binary search tree means leftmost node
if (tree == NULL || tree->left == NULL)
return tree;
else
smallest_node(tree->left);
}
struct node *largest_node(struct node *tree){ // largest means rightmost node.
if (tree == NULL || tree->right == NULL)
return tree;
else
return largest_node(tree->right);
}
struct node *delete_element(struct node *tree, int val){
if (tree == NULL)
return tree;
else if (val < tree->data)
tree->left = delete_element(tree->left, val);
// whatever deletion happens in 'else', the returned address of tree from there to be stored in these tree->left or tree->right locations of previous node.
// func will delete node and return the changed address which need to be stored in previous node pointer.
// so, prev node left pointer = address of new node after deletion.
// multiple recursions to reach correct node & then store the changed address due to deletion, to node prev. than one deleted.
else if (val > tree->data)
tree->right = delete_element(tree->right, val);
else{
if (tree->left == NULL && tree->right == NULL){ // leaf node
free(tree); // deallocate memory of node
tree = NULL; //the address of pointer set to NULL
return tree;
}
else if (tree->left == NULL){
struct node *temp;
temp = tree;
tree = tree->right; // move tree pointer to right side node
free(temp);
return tree; // return address of right subtree of node(which is deleted) to second or third elseif statement of this func.
}
else if (tree->right == NULL){
struct node *temp;
temp = tree;
tree = tree->left;
free(temp);
return tree;
}
else{
struct node *large_node;
large_node = largest_node(tree->left); // either it's rightmost leaf node or secondlast right node of left subtree
tree->data = large_node->data;
tree->left = delete_element(tree->left, large_node->data); // delete that node with largest val in left subtree
return tree;
}
}
}
int main(){
int tree_val;
printf("Enter values to be inserted in the tree.\n");
printf("Enter -1 to stop.\n");
scanf("%d", &tree_val);
while(tree_val != -1){
tree_insert(tree_val);
scanf("%d", &tree_val);
}
printf("\nInorder Traversal : ");
inorder(tree);
printf("\nPre-Order Traversal : ");
preorder(tree);
printf("\nPostOrder Traversal : ");
postorder(tree);
printf("\n\nTotal number of nodes in the tree : %d", total_nodes(tree));
printf("\nTotal number of internal nodes : %d", internal_nodes(tree));
printf("\nTotal number of external nodes : %d", external_nodes(tree));
printf("\nSmallest node in the tree : %d", smallest_node(tree)->data);
printf("\nLargest node of the tree : %d", largest_node(tree)->data);
printf("\nEnter value to search : ");
scanf("%d", &tree_val);
printf("\nElement found at %d level.",search(tree, tree_val));
printf("\nEnter element to delete : ");
int del_val;
scanf("%d", &del_val);
delete_element(tree, del_val);
printf("\nElement deleted successfully.");
mirror_tree(tree);
printf("\n\nMirror tree has been created.\n");
printf("\nMirror tree Inorder Traversal : ");
inorder(tree);
printf("\nMirror tree Pre-Order Traversal : ");
preorder(tree);
printf("\nMirror tree PostOrder Traversal : ");
postorder(tree);
return 0;
}