-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcat_train_utils.py
309 lines (277 loc) · 10.4 KB
/
cat_train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
## CAT Utils
import os
import sys
import torch
from peft import PeftModel
from learnable_lora.peft_model import (
CustomPeftModel
)
from try_llama import LinearLlamaModel, LinearLlamaForCausalLM
import re
from tqdm import tqdm
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def load_model(args) -> tuple:
"""
load tuned model
Args:
args:
Returns:
tuple(tokenizer, model)
"""
base_model = args.base_model
if not base_model:
raise ValueError(f'can not find base model name by the value: {args.model}')
if not args.lora_weights:
raise ValueError(f'can not find lora weight, the value is')
lora_weights = args.lora_weights[0]
load_8bit = args.load_8bit
if "LLaMA" in args.model:
tokenizer = LlamaTokenizer.from_pretrained(base_model)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
## add special tokens
if args.add_special_toks:
tokenizer.add_tokens(['[START]', '[END]'], special_tokens=True)
x = tokenizer('[START] [END]')
print(x)
if device == "cuda":
model = LinearLlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float32,
device_map="auto",
trust_remote_code=True,
) # fix zwq
if args.lora_mix_mode:
raise NotImplementedError("LoRA mix not supported")
# Convert from transformers to PEFT model and add 1st adapter
model = CustomPeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map={"":0},
adapter_name='adapter_0'
)
adapters_mix = args.lora_weights
adapters_mix_names = [f"adapter_{str(i)}" for i in range(len(adapters_mix))]
num_adapters = len(adapters_mix)
# load remaining adapters
for i in range(1,num_adapters):
model.load_adapter(adapters_mix[i], adapter_name=adapters_mix_names[i])
# equal weights for all adapters
adapters_mix_weights = [1/num_adapters for _ in range(num_adapters)]
assert args.lora_mix_mode in ["linear", "cat", "svd"], "wrong LoRA mix method"
combination_name = args.lora_mix_mode
model.add_weighted_adapter(adapters=adapters_mix_names,
weights=adapters_mix_weights,
combination_type=combination_name,
adapter_name=f"adapter_{args.lora_mix_mode}_mix",
)
model.set_adapter(f"adapter_{args.lora_mix_mode}_mix")
print(model.active_adapters)
print(adapters_mix_weights)
print(f"Added mix adapter using {args.lora_mix_mode} with {num_adapters} adapters")
else :
# Load single LoRA adapter
model = CustomPeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float32,
device_map={"":0},
adapter_name='adapter_0'
)
print("using custom peft")
adapters_mix = args.lora_weights
adapters_mix_names = [f"adapter_{str(i)}" for i in range(len(adapters_mix))]
num_adapters = len(adapters_mix)
# load remaining adapters
for i in range(1,num_adapters):
model.load_adapter(adapters_mix[i], adapter_name=adapters_mix_names[i])
model.base_model.set_adapter(adapters_mix_names)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
## add special tokens
if args.add_special_toks:
model.resize_token_embeddings(len(tokenizer))
model.eval()
print("-"*10)
print(model)
print("-"*10)
print(f"Active adapters {model.active_adapters}")
for name,p in model.named_parameters():
p.requires_grad = False
return tokenizer, model
def load_mixed_model(args):
base_model = args.base_model
if not base_model:
raise ValueError(f'can not find base model name by the value: {args.model}')
if not args.lora_weights:
raise ValueError(f'can not find lora weight, the value is')
lora_weights = args.lora_weights[0]
load_8bit = args.load_8bit
if "LLaMA" in args.model:
tokenizer = LlamaTokenizer.from_pretrained(base_model, token=TOKEN)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
## add special tokens
if args.add_special_toks:
tokenizer.add_tokens(['[START]', '[END]'], special_tokens=True)
x = tokenizer('[START] [END]')
print(x)
lora_weights = args.lora_weights[0]
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
token = TOKEN
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map={"":0},
adapter_name='adapter_0'
)
adapters_mix = args.lora_weights
adapters_mix_names = [f"adapter_{str(i)}" for i in range(len(adapters_mix))]
num_adapters = len(adapters_mix)
# load remaining adapters
for i in range(1,num_adapters):
_ = model.load_adapter(adapters_mix[i], adapter_name=adapters_mix_names[i])
# method params
weights = args.mix_weights
adapter_name = "merge"
density = 0.75
if adapter_name in model.peft_config:
model.delete_adapter(adapter_name)
model.add_weighted_adapter(adapters_mix_names, weights, adapter_name, combination_type=args.lora_mix_mode, density=density)
model.eval()
model.set_adapter("merge")
print(model.active_adapters)
return tokenizer, model
def extract_answer(args, sentence: str) -> float:
dataset = args.dataset
if dataset == 'boolq':
sentence_ = sentence.strip()
pred_answers = re.findall(r'true|false', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
elif dataset == 'natural_questions':
sentence_ = sentence.strip()
if "|" in sentence_:
sentence_ = sentence_.split("|")
else:
sentence_ = [sentence_]
return sentence_
elif dataset == 'piqa':
sentence_ = sentence.strip()
pred_answers = re.findall(r'solution1|solution2', sentence_)
pred_options = re.findall(r'answer1|answer2', sentence_)
if pred_answers:
return pred_answers[0]
if pred_options:
return pred_options[0]
return ""
elif dataset in ['ARC-Challenge', 'ARC-Easy', 'openbookqa']:
sentence_ = sentence.strip()
pred_answers = re.findall(r'answer1|answer2|answer3|answer4|answer5', sentence_)
pred_options = re.findall(r'option1|option2|option3|option4|option5', sentence_)
if pred_answers:
return pred_answers[0]
if pred_options:
return pred_options[0]
return ""
elif dataset == 'social_i_qa':
sentence_ = sentence.strip()
pred_answers = re.findall(r'answer1|answer2|answer3', sentence_)
pred_options = re.findall(r'option1|option2|option3', sentence_)
if pred_answers:
return pred_answers[0]
if pred_options:
return pred_options[0]
return ""
elif dataset == 'hellaswag':
sentence_ = sentence.strip()
pred_answers = re.findall(r'ending1|ending2|ending3|ending4', sentence_)
pred_options = re.findall(r'option1|option2|option3|option4', sentence_)
if pred_answers:
return pred_answers[0]
if pred_options:
return pred_options[0]
return ""
elif dataset == 'winogrande':
sentence_ = sentence.strip()
pred_answers = re.findall(r'option1|option2', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
def extract_answer_number(args, sentence: str) -> float:
dataset = args.dataset.lower()
if dataset in ["multiarith", "addsub", "singleeq", "gsm8k", "svamp", "formats10", "gsm8k-hard"]:
sentence = sentence.replace(',', '')
pred = [s for s in re.findall(r'-?\d+\.?\d*', sentence)]
if not pred:
return float('inf')
pred_answer = float(pred[-1])
else:
raise NotImplementedError(' not support dataset: {}'.format(dataset))
if isinstance(pred_answer, str):
try:
pred_answer = float(pred_answer)
except ValueError as e:
pred_answer = float('inf')
return pred_answer
def extract_answer_letter(args, sentence: str) -> str:
sentence_ = sentence.strip()
pred_answers = re.findall(r'A|B|C|D|E', sentence_)
if pred_answers:
if not pred_answers:
return ''
return pred_answers[0]
else:
return ''