Skip to content
forked from YPARK/gtex-fqtl

Factored QTL analysis applied to GTEx and GWAS of 114 complex traits

Notifications You must be signed in to change notification settings

aksarkar/gtex-fqtl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Factored QTL analysis on GTEx v6p data

Results of Sarkar and Park et al. (2017) submitted.

Results

All the tissue and SNP effect sizes can be bound in

result/stat/chr1/50/combined.txt.gz

(...)

result/stat/chr22/50/combined.txt.gz

Note that individual by tissue gene expression matrix Y was regressed on cis-regulatory genotype matrix X with factored effect size matrix.

Y ~ X * sum_k (Theta[, k] * t(Theta[, k])) + confounders + errors

Each row contains

  1. ENSEMBL.ID : unique gene ID
  2. Chromosome : chromosome name (1 to 22)
  3. TSS : transcription start site (provided by GTEx v6p)
  4. Tissue.idx : comma-separate tissue indexes
  5. Tissue.names : comma-separate tissue names
  6. Tissue.theta : comma-separate tissue effect sizes
  7. Tissue.se : comma-separate tissue effect size standard errors
  8. Tissue.lodds : comma-separate tissue PIP log-odds
  9. SNP.names : comma-separate SNP names
  10. SNP.theta : comma-separate SNP effect sizes
  11. SNP.se : comma-separate SNP effect size standard errors
  12. SNP.lodds : comma-separate SNP PIP log-odds
  13. k : factor index
  14. pip : posterior inclusion probability cutoff

About

Factored QTL analysis applied to GTEx and GWAS of 114 complex traits

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 62.6%
  • Makefile 18.7%
  • Shell 11.4%
  • Python 5.8%
  • Other 1.5%