-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathops.py
322 lines (262 loc) · 13 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
from torch.autograd import Variable
import numpy as np
import os
import sys
from util import *
import shutil
from torch import nn
from torch._six import inf
from pytorch3d.renderer import look_at_view_transform
EXAHSTION_LIMIT = 100
def initialize_setup(setup):
SHAPE_FEATURES_SIZE = {"logits": 40, "post_max": 1024,
"transform_matrix": 64*64, "pre_linear": 512, "post_max_trans": 1024 + 64*64, "logits_trans": 40+64*64, "pre_linear_trans": 512+64*64}
setup["features_size"] = SHAPE_FEATURES_SIZE[setup["features_type"]]
if setup["exp_id"] == "random":
setup["exp_id"] = random_id()
check_folder(os.path.join(setup["results_dir"], setup["exp_set"]))
setup["results_dir"] = os.path.join(
setup["results_dir"], setup["exp_set"], setup["exp_id"])
setup["cameras_dir"] = os.path.join(
setup["results_dir"], setup["cameras_dir"])
setup["renderings_dir"] = os.path.join(
setup["results_dir"], setup["renderings_dir"])
setup["verts_dir"] = os.path.join(setup["results_dir"], "verts")
setup["checkpoint_dir"] = os.path.join(setup["results_dir"], "checkpoint")
setup["features_dir"] = os.path.join(setup["results_dir"], "features")
setup["logs_dir"] = os.path.join(setup["results_dir"], setup["logs_dir"])
setup["feature_file"] = os.path.join(
setup["features_dir"], "features_training.npy")
setup["targets_file"] = os.path.join(
setup["features_dir"], "targets_training.npy")
check_folder(setup["results_dir"])
check_folder(setup["cameras_dir"])
check_folder(setup["renderings_dir"])
check_folder(setup["logs_dir"])
check_folder(setup["verts_dir"])
check_folder(setup["checkpoint_dir"])
setup["best_acc"] = 0.0
setup["best_loss"] = 0.0
setup["start_epoch"] = 0
setup["results_file"] = os.path.join(
setup["results_dir"], setup["exp_id"]+"_accuracy.csv")
setup["views_file"] = os.path.join(
setup["results_dir"], setup["exp_id"]+"_views.csv")
setup["weights_file"] = os.path.join(
setup["checkpoint_dir"], setup["exp_id"]+"_checkpoint.pt")
setup["is_learning_views"] = setup["views_config"] in ["learned_offset",
"learned_direct", "learned_spherical", "learned_random", "learned_transfer"]
setup["is_learning_points"] = setup["is_learning_views"] and (
setup["return_points_saved"] or setup["return_points_sampled"])
for k, v in setup.items():
if isinstance(v, bool):
setup[k] = int(v)
def initialize_setup_gcn(setup):
SHAPE_FEATURES_SIZE = {"logits": 40, "post_max": 1024,
"transform_matrix": 64*64, "pre_linear": 512, "post_max_trans": 1024 + 64*64, "logits_trans": 40+64*64, "pre_linear_trans": 512+64*64}
setup["features_size"] = SHAPE_FEATURES_SIZE[setup["features_type"]]
if setup["exp_id"] == "random":
setup["exp_id"] = random_id()
r_dir = copy.deepcopy(setup["results_dir"])
check_folder(os.path.join(setup["results_dir"], setup["exp_set"]))
setup["results_dir"] = os.path.join(
setup["results_dir"], setup["exp_set"], setup["exp_id"])
setup["cameras_dir"] = os.path.join(
setup["results_dir"], setup["cameras_dir"])
setup["renderings_dir"] = os.path.join(
setup["results_dir"], setup["renderings_dir"])
setup["verts_dir"] = os.path.join(setup["results_dir"], "verts")
setup["checkpoint_dir1"] = os.path.join(
setup["results_dir"], "checkpoint_stage1")
setup["checkpoint_dir2"] = os.path.join(
setup["results_dir"], "checkpoint_stage2")
setup["cnn_name"] = "resnet{}".format(setup["depth"])
setup["logs_dir"] = os.path.join(setup["results_dir"], setup["logs_dir"])
setup["features_dir"] = os.path.join(setup["results_dir"], "features")
setup["feature_file"] = os.path.join(
setup["features_dir"], f"features_layer{setup['LFDA_layer']}_training.npy")
setup["targets_file"] = os.path.join(
setup["features_dir"], f"targets_layer{setup['LFDA_layer']}_training.npy")
setup["LFDA_file"] = os.path.join(
setup["features_dir"], f"reduction_LFDA_{setup['LFDA_dimension']}_layer{setup['LFDA_layer']}.pkl")
check_folder(setup["results_dir"])
check_folder(setup["cameras_dir"])
check_folder(setup["renderings_dir"])
check_folder(setup["logs_dir"])
check_folder(setup["verts_dir"])
check_folder(setup["checkpoint_dir1"])
check_folder(setup["checkpoint_dir2"])
if setup["run_mode"] != "test_cls" and setup["resume_first"]:
if "modelnet" in setup["data_dir"].lower():
dset_name = "modelnet"
ckpt_nb = 29
elif "shapenet" in setup["data_dir"].lower():
dset_name = "shapenet"
ckpt_nb = 29
elif "scanobjectnn" in setup["data_dir"].lower():
dset_name = "scanobjectnn"
ckpt_nb = 29
shutil.copyfile(os.path.join(r_dir, "checkpoints", dset_name, "model-000{}.pth".format(ckpt_nb)),
os.path.join(setup["checkpoint_dir1"], "model-000{}.pth".format(ckpt_nb)))
setup["best_acc"] = 0.0
setup["best_loss"] = 0.0
setup["start_epoch"] = 0
setup["results_file"] = os.path.join(
setup["results_dir"], setup["exp_id"]+"_accuracy.csv")
setup["views_file"] = os.path.join(
setup["results_dir"], setup["exp_id"]+"_views.csv")
setup["weights_file1"] = os.path.join(
setup["checkpoint_dir1"], setup["exp_id"]+"_checkpoint.pt")
setup["weights_file2"] = os.path.join(
setup["checkpoint_dir2"], setup["exp_id"]+"_checkpoint.pt")
setup["is_learning_views"] = setup["views_config"] in [
"learned_offset", "learned_direct", "learned_spherical", "learned_random", "learned_transfer"]
setup["is_learning_points"] = setup["is_learning_views"] and (
setup["return_points_saved"] or setup["return_points_sampled"])
for k, v in setup.items():
if isinstance(v, bool):
setup[k] = int(v)
def applied_transforms(images_batch, crop_ratio=0.3):
"""
a pyutroch transforms that can be applied batchwise
"""
N, C, H, W = images_batch.shape
padd = torch.nn.ReplicationPad2d(int((1+crop_ratio)*H)-H)
images_batch = RandomHorizontalFlip()(images_batch)
images_batch = RandomCrop(H)(padd(images_batch))
return images_batch
def super_batched_op(dim, batched_ops, batched_tensor, *args, **kwargs):
"""
convert a batch operation in pytorch to work on 5 dims (N,C,H,W) + X , where `dim` will dictate the extra dimension X that will be put on dimensions N
"""
return unbatch_tensor(batched_ops(batch_tensor(batched_tensor, dim=dim, squeeze=True), *args, **kwargs), dim=dim, unsqueeze=True, batch_size=batched_tensor.shape[0])
def check_and_correct_rotation_matrix(R, T, nb_trials, azim, elev, dist):
exhastion = 0
while not check_valid_rotation_matrix(R):
exhastion += 1
R, T = look_at_view_transform(dist=batch_tensor(dist.T, dim=1, squeeze=True), elev=batch_tensor(elev.T + 90.0 * torch.rand_like(elev.T, device=elev.device),
dim=1, squeeze=True), azim=batch_tensor(azim.T + 180.0 * torch.rand_like(azim.T, device=elev.device), dim=1, squeeze=True))
if not check_valid_rotation_matrix(R) and exhastion > nb_trials:
sys.exit("Remedy did not work")
return R, T
def regualarize_rendered_views(rendered_images, dropout_p=0, augment_training=False, crop_ratio=0.3):
rendered_images = nn.functional.dropout2d(
rendered_images, p=dropout_p, training=True)
if augment_training:
rendered_images = super_batched_op(
1, applied_transforms, rendered_images, crop_ratio=crop_ratio)
return rendered_images
def clip_grads_(parameters, max_norm, norm_type=2):
r"""Clips gradient norm of an iterable of parameters and zero them if nan.
The norm is computed over all gradients together, as if they were
concatenated into a single vector. Gradients are modified in-place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
max_norm = float(max_norm)
norm_type = float(norm_type)
for p in parameters:
p.grad.detach().data = zero_nans(p.grad.detach().data)
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max() for p in parameters)
else:
total_norm = torch.norm(torch.stack(
[torch.norm(p.grad.detach(), norm_type) for p in parameters]), norm_type)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef < 1:
for p in parameters:
p.grad.detach().mul_(clip_coef)
return total_norm
def test_point_network(model, criterion, data_loader):
total = 0.0
correct = 0.0
total_loss = 0.0
n = 0
from tqdm import tqdm
for i, (targets, _, points, _) in enumerate(tqdm(data_loader)):
with torch.no_grad():
points = points.transpose(1, 2).cuda()
targets = targets.cuda()
targets = Variable(targets)
logits, shape_features, trans = model(points)
loss = criterion(logits, targets)
total_loss += loss
n += 1
_, predicted = torch.max(logits.data, 1)
total += targets.size(0)
correct += (predicted.cpu() == targets.cpu()).sum()
avg_test_acc = 100 * correct / total
avg_loss = total_loss / n
return avg_test_acc, avg_loss
def save_checkpoint(state, setup, views_record, weights_file, ignore_saving_models=False):
if not ignore_saving_models:
torch.save(state, weights_file)
setup_dict = ListDict(list(setup.keys()))
save_results(setup["results_file"], setup_dict.append(setup))
if views_record is not None:
save_results(setup["views_file"], views_record)
def load_checkpoint(setup, models_bag, weights_file):
print('\n==> Loading checkpoint..')
assert os.path.isfile(weights_file
), 'Error: no checkpoint file found!'
checkpoint = torch.load(weights_file)
setup["best_acc"] = checkpoint['best_acc']
setup["start_epoch"] = checkpoint['epoch']
models_bag["mvnetwork"].load_state_dict(checkpoint['state_dict'])
if setup["is_learning_views"]:
models_bag["mvtn"].load_state_dict(
checkpoint['mvtn'])
models_bag["mvtn_optimizer"].load_state_dict(
checkpoint['mvtn_optimizer'])
models_bag["optimizer"].load_state_dict(checkpoint['optimizer'])
def load_checkpoint_robustness(setup, models_bag, weights_file):
print('\n==> Loading checkpoint..')
assert os.path.isfile(weights_file
), 'Error: no checkpoint file found!'
checkpoint = torch.load(weights_file)
models_bag["mvnetwork"].load_state_dict(checkpoint['state_dict'])
if setup["is_learning_views"]:
models_bag["mvtn"].load_state_dict(
checkpoint['mvtn'])
def mvtosv(x): return rearrange(x, 'b m h w -> (b m) h w ')
def mvctosvc(x): return rearrange(x, 'b m c h w -> (b m) c h w ')
def svtomv(x, nb_views=1): return rearrange(
x, '(b m) h w -> b m h w', m=nb_views)
def svctomvc(x, nb_views=1): return rearrange(
x, '(b m) c h w -> b m c h w', m=nb_views)
def extra_IOU_metrics(points_GT, points_predictions, pixels_GT, pixel_mask, points_mask, object_class, parts,):
"""
a funciton to calculate IOUs for bacth of point clouds `points_predictions` based on the ground truth `points_GT` and record more metrics as well based on pixels
"""
bs, p_nb = points_GT.shape
_, v, h, w = pixels_GT.shape
cur_shape_ious = []
cur_parts_valid = []
part_nb = []
cls_nb = []
pixel_perc = []
point_perc = []
for cl in range(torch.max(parts).item()):
cur_gt_mask = (points_GT == cl) & points_mask
cur_pred_mask = (points_predictions == cl) & points_mask
I = (cur_pred_mask & cur_gt_mask).sum(dim=-1)
U = (cur_pred_mask | cur_gt_mask).sum(dim=-1)
cur_shape_ious.extend((100.0 * I/(U + 1e-7)).cpu().numpy().tolist())
cur_parts_valid.extend((U > 0).to(torch.int32).cpu().numpy().tolist())
cls_nb.extend(object_class.squeeze().cpu().numpy().tolist())
part_nb.extend(bs*[cl])
pixel_perc.extend((100.0*(pixels_GT == cl).sum(dim=-1).sum(dim=-1).sum(dim=-1).to(
torch.float).cpu().numpy() / (pixel_mask.sum().item())).tolist())
point_perc.extend((100.0*cur_gt_mask.sum(dim=-1).to(
torch.float).cpu().numpy() / points_mask.sum().item()).tolist())
return pixel_perc, point_perc, cur_shape_ious, cur_parts_valid, cls_nb, part_nb