-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculator.vhd
299 lines (233 loc) · 8.24 KB
/
calculator.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity calculator is
generic( N : integer := 5 );
port(
clock : in std_logic;
A, B : in std_logic_vector(N-1 downto 0);
Operation : in std_logic_vector(1 downto 0);
Start : in std_logic;
RST_N : in std_logic;
seven_seg_digit_1 : out STD_LOGIC_VECTOR (6 downto 0);
seven_seg_digit_2 : out STD_LOGIC_VECTOR (6 downto 0);
seven_seg_digit_3 : out STD_LOGIC_VECTOR (6 downto 0);
seven_seg_digit_4 : out STD_LOGIC_VECTOR (6 downto 0);
seven_seg_digit_5 : out STD_LOGIC_VECTOR (6 downto 0);
seven_seg_digit_6 : out STD_LOGIC_VECTOR (6 downto 0);
Done : out std_logic
-- temp : fur debug
-- Result_a : out std_logic_vector(2*N-1 downto 0);
-- Result_s : out std_logic_vector(2*N-1 downto 0);
-- Result_m : out std_logic_vector(2*N-1 downto 0);
-- Result_d : out std_logic_vector(2*N-1 downto 0);
-- Remain : out std_logic_vector(2*N-1 downto 0)
);
end calculator;
architecture Structural of calculator is
component BDC_to_7_segmen is
port(
BCD_i : in std_logic_vector (3 downto 0);
clk_i : in std_logic;
seven_seg :out std_logic_vector (6 downto 0));
end component;
component BCD_2_digit_7_seg_display
Port (
A,B : in std_logic_vector(N-1 downto 0) ;
clk_i : in std_logic; -- system clock
rst_i : in std_logic; -- synchronous reset, active-high
Done : in std_logic;
Operation : in STD_LOGIC_VECTOR (1 downto 0);
data_add : in STD_LOGIC_VECTOR (2*N-1 downto 0) := (others => '0');
data_sub : in STD_LOGIC_VECTOR (2*N-1 downto 0) := (others => '0');
data_mul : in STD_LOGIC_VECTOR (2*N-1 downto 0) := (others => '0');
data_div : in STD_LOGIC_VECTOR (2*N-1 downto 0) := (others => '0');
data_rem : in STD_LOGIC_VECTOR (2*N-1 downto 0) := (others => '0');
BCD_digit_1 : out STD_LOGIC_VECTOR (3 downto 0);
BCD_digit_2 : out STD_LOGIC_VECTOR (3 downto 0);
BCD_digit_3 : out STD_LOGIC_VECTOR (3 downto 0);
BCD_digit_4 : out STD_LOGIC_VECTOR (3 downto 0);
BCD_digit_5 : out STD_LOGIC_VECTOR (3 downto 0);
BCD_digit_6 : out STD_LOGIC_VECTOR (3 downto 0)
);
end component;
component division is
port(
clock : in std_logic; -- system clock
reset : in std_logic; -- synchronous reset, active-high
start : in std_logic;
A,B : in std_logic_vector(N-1 downto 0) := (others => '0');
Q : out std_logic_vector(2*N-1 downto 0) := (others => '0'); -- quotient
R : out std_logic_vector(2*N-1 downto 0) := (others => '0'); -- remainer
DONE : out std_logic;
Operation : std_logic_vector(1 downto 0)
);
end component;
component Multiplication is
port (
CLK : in std_logic;
RST_N : in std_logic;
START : in std_logic;
A, B : in std_logic_vector(N - 1 downto 0) := (others => '0');
R : out std_logic_vector(2 * N - 1 downto 0) := (others => '0');
DONE : out std_logic := '0';
Operation : std_logic_vector(1 downto 0)
);
end component;
component add is
port( START,CLK,RST_N : in std_logic ;
A,B : in std_logic_vector(N-1 downto 0) ;
M : in std_logic := '0' ;
R : out std_logic_vector(2*N-1 downto 0);
DONE : out std_logic;
Operation : in std_logic_vector(1 downto 0)
);
end component;
component sub is
port( START,CLK,RST_N : in std_logic ;
A,B : in std_logic_vector(N-1 downto 0) ;
M : in std_logic := '0' ;
R : out std_logic_vector(2*N-1 downto 0);
DONE : out std_logic;
Operation : in std_logic_vector(1 downto 0)
);
end component;
-- SIGNALs
signal result_add : std_logic_vector(2*N-1 downto 0);
signal result_sub : std_logic_vector(2*N-1 downto 0);
signal done_add : std_logic;
signal done_sub : std_logic;
signal result_mul : std_logic_vector(2*N-1 downto 0);
signal done_mul : std_logic;
signal result_div : std_logic_vector(2*N-1 downto 0);
signal result_div_rem : std_logic_vector(2*N-1 downto 0);
signal done_div : std_logic;
signal global_done : std_logic;
signal add_sub_select : std_logic;
signal BCD_data_digit_1 : STD_LOGIC_VECTOR (3 downto 0);
signal BCD_data_digit_2 : STD_LOGIC_VECTOR (3 downto 0);
signal BCD_data_digit_3 : STD_LOGIC_VECTOR (3 downto 0);
signal BCD_data_digit_4 : STD_LOGIC_VECTOR (3 downto 0);
signal BCD_data_digit_5 : STD_LOGIC_VECTOR (3 downto 0);
signal BCD_data_digit_6 : STD_LOGIC_VECTOR (3 downto 0);
begin
-- ====================================================================
-- Port Mapping + - x /
Adder : add
port map(
START => Start,
CLK => clock,
RST_N => RST_N,
A => A,
B => B,
M => '0',
R => result_add,
DONE => done_add,
Operation => Operation
);
Subtract : sub
port map(
START => Start,
CLK => clock,
RST_N => RST_N,
A => A,
B => B,
M => '1',
R => result_sub,
DONE => done_sub,
Operation => Operation
);
Divide : division
port map(
clock => clock,
reset => RST_N,
start => Start,
A => A,
B => B,
Q => result_div,
R => result_div_rem,
DONE => done_div,
Operation => Operation
);
Multiply : Multiplication
port map(
CLK => clock,
RST_N => RST_N,
START => Start,
A => A,
B => B,
R => result_mul,
DONE => done_mul,
Operation => Operation
);
global_done <= ( done_add or done_sub or done_mul or done_div );
Done <= global_done;
-- ====================================================================
-- Result to 4-bit to each display
bcd_to_seven_digit : BCD_2_digit_7_seg_display
port map(
A => A,
B => B,
clk_i => clock,
rst_i => RST_N,
Done => global_done,
Operation => Operation,
data_add => result_add,
data_sub => result_sub,
data_mul => result_mul,
data_div => result_div,
data_rem => result_div_rem,
BCD_digit_1 => BCD_data_digit_1,
BCD_digit_2 => BCD_data_digit_2,
BCD_digit_3 => BCD_data_digit_3,
BCD_digit_4 => BCD_data_digit_4,
BCD_digit_5 => BCD_data_digit_5,
BCD_digit_6 => BCD_data_digit_6
);
-- ====================================================================
-- 4-bit to 7-Segment
seven_seg_1 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_1,
clk_i => clock,
seven_seg => seven_seg_digit_1
);
seven_seg_2 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_2,
clk_i => clock,
seven_seg => seven_seg_digit_2
);
seven_seg_3 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_3,
clk_i => clock,
seven_seg => seven_seg_digit_3
);
seven_seg_4 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_4,
clk_i => clock,
seven_seg => seven_seg_digit_4
);
seven_seg_5 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_5,
clk_i => clock,
seven_seg => seven_seg_digit_5
);
seven_seg_6 : BDC_to_7_segmen
port map(
BCD_i => BCD_data_digit_6,
clk_i => clock,
seven_seg => seven_seg_digit_6
);
-- ====================================================================
-- Output for wfv debug
-- Result_a <= result_add;
-- Result_s <= result_sub;
-- Result_m <= result_mul;
-- Result_d <= result_div;
-- Remain <= result_div_rem;
end Structural;