diff --git a/bamt/core/node_models/continuous_distribution.py b/bamt/core/node_models/continuous_distribution.py index eafd37d..d37c06a 100644 --- a/bamt/core/node_models/continuous_distribution.py +++ b/bamt/core/node_models/continuous_distribution.py @@ -31,12 +31,10 @@ class ContinuousDistribution: however, any custom continuous distribution can be used, as long as it implements `scipy.stats` interface. Example Usage: - ```python - data = np.random.normal(0, 1, 1000) - dist = ContinuousDistribution() - dist.fit(data, distributions_pool=DistributionPool.SMALL) - samples = dist.sample(10) - ``` + >>> data = np.random.normal(0, 1, 1000) + >>> dist = ContinuousDistribution() + >>> dist.fit(data, distributions_pool=DistributionPool.SMALL) + >>> samples = dist.sample(10) """ SMALL_POOL: Tuple[Type[stats.rv_continuous], ...] = ( diff --git a/bamt/core/node_models/empirical_distribution.py b/bamt/core/node_models/empirical_distribution.py index 2e0a5d1..8991b88 100644 --- a/bamt/core/node_models/empirical_distribution.py +++ b/bamt/core/node_models/empirical_distribution.py @@ -10,15 +10,14 @@ class EmpiricalDistribution(Distribution): This class fits an empirical distribution to the provided categorical or discrete data by calculating the probabilities of unique values and allows sampling from it. Usage example: - ```python - data = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana', 'orange', 'apple'] - emp_dist = EmpiricalDistribution() - emp_dist.fit(data) - print(emp_dist) - samples = emp_dist.sample(10) - print(samples) - print(emp_dist.pmf('banana')) - ``` + >>> data = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana', 'orange', 'apple'] + >>> emp_dist = EmpiricalDistribution() + >>> emp_dist.fit(data) + >>> print(emp_dist) + >>> samples = emp_dist.sample(10) + >>> print(samples) + >>> print(emp_dist.pmf('banana')) + """ def __init__(self) -> None: diff --git a/bamt/core/nodes/root_nodes/continuous_node.py b/bamt/core/nodes/root_nodes/continuous_node.py index 3e776ee..82edcf5 100644 --- a/bamt/core/nodes/root_nodes/continuous_node.py +++ b/bamt/core/nodes/root_nodes/continuous_node.py @@ -11,16 +11,15 @@ class ContinuousNode(RootNode): These distributions are wrapped in the `ContinuousDistribution` class. Example Usage: - ```python - data = np.random.normal(0, 1, 1000) - dist = ContinuousDistribution() - node = ContinuousNode(distribution=dist) - node.fit(data) - print(node) - samples = node.sample(10) - print(samples) - print(node.get_parents()) - ``` + + >>> data = np.random.normal(0, 1, 1000) + >>> dist = ContinuousDistribution() + >>> node = ContinuousNode(distribution=dist) + >>> node.fit(data) + >>> print(node) + >>> samples = node.sample(10) + >>> print(samples) + >>> print(node.get_parents()) """ def __init__(self, distribution: Optional[ContinuousDistribution] = None):