-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
1,452 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from os import path\n", | ||
"from aiida import load_dbenv, is_dbenv_loaded\n", | ||
"from aiida.backends import settings\n", | ||
"if not is_dbenv_loaded():\n", | ||
" load_dbenv(profile=settings.AIIDADB_PROFILE)\n", | ||
"from aiida.orm import DataFactory" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from aiidalab_widgets_base import aiidalab_display" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## ParameterData" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# visualize ParameterData\n", | ||
"ParameterData = DataFactory('parameter')\n", | ||
"p = ParameterData(dict={\n", | ||
" 'Parameter' :'super long string '*4,\n", | ||
" 'parameter 2' :'value 2',\n", | ||
" 'parameter 3' : 1,\n", | ||
" 'parameter 4' : 2,\n", | ||
"})\n", | ||
"aiidalab_display(p.store(), downloadable=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create molecule\n", | ||
"from ase.build import molecule\n", | ||
"m = molecule('H2O')\n", | ||
"m.center(vacuum=2.0)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## CifData" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# visualize CifData\n", | ||
"CifData = DataFactory('cif')\n", | ||
"s = CifData(ase=m)\n", | ||
"aiidalab_display(s.store(), downloadable=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## StructureData" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# visualize StructureData\n", | ||
"StructureData = DataFactory('structure')\n", | ||
"s = StructureData(ase=m)\n", | ||
"aiidalab_display(s.store(), downloadable=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## BandsData" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"BandsData = DataFactory('array.bands')\n", | ||
"bs = BandsData()\n", | ||
"kpoints = np.array([[0. , 0. , 0. ], # array shape is 12 * 3\n", | ||
" [0.1 , 0. , 0.1 ],\n", | ||
" [0.2 , 0. , 0.2 ],\n", | ||
" [0.3 , 0. , 0.3 ],\n", | ||
" [0.4 , 0. , 0.4 ],\n", | ||
" [0.5 , 0. , 0.5 ],\n", | ||
" [0.5 , 0. , 0.5 ],\n", | ||
" [0.525 , 0.05 , 0.525 ],\n", | ||
" [0.55 , 0.1 , 0.55 ],\n", | ||
" [0.575 , 0.15 , 0.575 ],\n", | ||
" [0.6 , 0.2 , 0.6 ],\n", | ||
" [0.625 , 0.25 , 0.625 ]])\n", | ||
"\n", | ||
"bands = np.array([\n", | ||
" [-5.64024889, 6.66929678, 6.66929678, 6.66929678, 8.91047649], # array shape is 12 * 5, where 12 is the size of the kpoints mesh\n", | ||
" [-5.46976726, 5.76113772, 5.97844699, 5.97844699, 8.48186734], # and 5 is the number of states\n", | ||
" [-4.93870761, 4.06179965, 4.97235487, 4.97235488, 7.68276008],\n", | ||
" [-4.05318686, 2.21579935, 4.18048674, 4.18048675, 7.04145185],\n", | ||
" [-2.83974972, 0.37738276, 3.69024464, 3.69024465, 6.75053465],\n", | ||
" [-1.34041116, -1.34041115, 3.52500177, 3.52500178, 6.92381041],\n", | ||
" [-1.34041116, -1.34041115, 3.52500177, 3.52500178, 6.92381041],\n", | ||
" [-1.34599146, -1.31663872, 3.34867603, 3.54390139, 6.93928289],\n", | ||
" [-1.36769345, -1.24523403, 2.94149041, 3.6004033 , 6.98809593],\n", | ||
" [-1.42050683, -1.12604118, 2.48497007, 3.69389815, 7.07537154],\n", | ||
" [-1.52788845, -0.95900776, 2.09104321, 3.82330632, 7.20537566],\n", | ||
" [-1.71354964, -0.74425095, 1.82242466, 3.98697455, 7.37979746]])\n", | ||
"bs.set_kpoints(kpoints)\n", | ||
"bs.set_bands(bands)\n", | ||
"labels = [(0, u'GAMMA'),\n", | ||
" (5, u'X'),\n", | ||
" (6, u'Z'),\n", | ||
" (11, u'U')]\n", | ||
"bs.labels = labels" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"aiidalab_display(bs.store()) # to visualize the bands" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## FolderData" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"FolderData = DataFactory('folder')\n", | ||
"fd = FolderData()\n", | ||
"with fd.folder.open(path.join('path','test1.txt'), 'w') as fobj:\n", | ||
" fobj.write('content of test1 file')\n", | ||
"with fd.folder.open(path.join('path','test2.txt'), 'w') as fobj:\n", | ||
" fobj.write('content of test2\\nfile')\n", | ||
"with fd.folder.open(path.join('path','test_long.txt'), 'w') as fobj:\n", | ||
" fobj.write('content of test_long file'*1000)\n", | ||
"aiidalab_display(fd.store(), downloadable=True)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.15rc1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,14 @@ | ||
# pylint: disable=unused-import | ||
from aiida import load_dbenv, is_dbenv_loaded | ||
from aiida.backends import settings | ||
if not is_dbenv_loaded(): | ||
load_dbenv(profile=settings.AIIDADB_PROFILE) | ||
|
||
from .structures import StructureUploadWidget # noqa | ||
from .structures_multi import MultiStructureUploadWidget # noqa | ||
from .codes import CodeDropdown # noqa | ||
from .codes import CodeDropdown, AiiDACodeSetup, extract_aiidacodesetup_arguments # noqa | ||
from .computers import SshComputerSetup, extract_sshcomputersetup_arguments # noqa | ||
from .computers import AiidaComputerSetup, extract_aiidacomputer_arguments # noqa | ||
from .display import aiidalab_display # noqa | ||
|
||
__version__ = "0.2.0a1" | ||
__version__ = "0.3.0b1" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from __future__ import print_function | ||
import os | ||
|
||
import ipywidgets as ipw | ||
|
||
class ParameterDataVisualizer(ipw.HTML): | ||
"""Visualizer class for ParameterData object""" | ||
def __init__(self, parameter, downloadable=True, **kwargs): | ||
super(ParameterDataVisualizer, self).__init__(**kwargs) | ||
import pandas as pd | ||
# Here we are defining properties of 'df' class (specified while exporting pandas table into html). | ||
# Since the exported object is nothing more than HTML table, all 'standard' HTML table settings | ||
# can be applied to it as well. | ||
# For more information on how to controle the table appearance please visit: | ||
# https://css-tricks.com/complete-guide-table-element/ | ||
self.value = ''' | ||
<style> | ||
.df { border: none; } | ||
.df tbody tr:nth-child(odd) { background-color: #e5e7e9; } | ||
.df tbody tr:nth-child(odd):hover { background-color: #f5b7b1; } | ||
.df tbody tr:nth-child(even):hover { background-color: #f5b7b1; } | ||
.df tbody td { min-width: 300px; text-align: center; border: none } | ||
.df th { text-align: center; border: none; border-bottom: 1px solid black;} | ||
</style> | ||
''' | ||
pd.set_option('max_colwidth', 40) | ||
df = pd.DataFrame([(key, value) for key, value | ||
in sorted(parameter.get_dict().items()) | ||
], columns=['Key', 'Value']) | ||
self.value += df.to_html(classes='df', index=False) # specify that exported table belongs to 'df' class | ||
# this is used to setup table's appearance using CSS | ||
if downloadable: | ||
import base64 | ||
payload = base64.b64encode(df.to_csv(index=False).encode()).decode() | ||
fname = '{}.csv'.format(parameter.pk) | ||
to_add = """Download table in csv format: <a download="{filename}" | ||
href="data:text/csv;base64,{payload}" target="_blank">{title}</a>""" | ||
self.value += to_add.format(filename=fname, payload=payload,title=fname) | ||
|
||
class StructureDataVisualizer(ipw.VBox): | ||
"""Visualizer class for StructureData object""" | ||
def __init__(self, structure, downloadable=True, **kwargs): | ||
import nglview | ||
self._structure = structure | ||
viewer = nglview.NGLWidget() | ||
viewer.add_component(nglview.ASEStructure(self._structure.get_ase())) # adds ball+stick | ||
viewer.add_unitcell() | ||
children = [viewer] | ||
if downloadable: | ||
self.file_format = ipw.Dropdown( | ||
options=['xyz', 'cif'], | ||
description="File format:", | ||
) | ||
self.download_btn = ipw.Button(description="Download") | ||
self.download_btn.on_click(self.download) | ||
children.append(ipw.HBox([self.file_format, self.download_btn])) | ||
super(StructureDataVisualizer, self).__init__(children, **kwargs) | ||
|
||
def download(self, b=None): | ||
import base64 | ||
from tempfile import TemporaryFile | ||
from IPython.display import Javascript | ||
with TemporaryFile() as fobj: | ||
self._structure.get_ase().write(fobj, format=self.file_format.value) | ||
fobj.seek(0) | ||
b64 = base64.b64encode(fobj.read()) | ||
payload = b64.decode() | ||
js = Javascript( | ||
""" | ||
var link = document.createElement('a'); | ||
link.href = "data:;base64,{payload}" | ||
link.download = "{filename}" | ||
document.body.appendChild(link); | ||
link.click(); | ||
document.body.removeChild(link); | ||
""".format(payload=payload,filename=str(self._structure.id)+'.'+self.file_format.value) | ||
) | ||
display(js) | ||
|
||
class FolderDataVisualizer(ipw.VBox): | ||
"""Visualizer class for FolderData object""" | ||
def __init__(self, folder, downloadable=True, **kwargs): | ||
self._folder = folder | ||
self.files = ipw.Dropdown( | ||
options=self._folder.get_folder_list(), | ||
description="Select file:", | ||
) | ||
self.text = ipw.Textarea( | ||
value="", | ||
description='File content:', | ||
layout={'width':"900px", 'height':'300px'}, | ||
disabled=False | ||
) | ||
self.change_file_view() | ||
self.files.observe(self.change_file_view, names='value') | ||
children = [self.files, self.text] | ||
if downloadable: | ||
self.download_btn = ipw.Button(description="Download") | ||
self.download_btn.on_click(self.download) | ||
children.append(self.download_btn) | ||
super(FolderDataVisualizer, self).__init__(children, **kwargs) | ||
|
||
def change_file_view(self, b=None): | ||
with open(self._folder.get_abs_path(self.files.value), "rb") as fobj: | ||
self.text.value = fobj.read() | ||
|
||
def download(self, b=None): | ||
import base64 | ||
from IPython.display import Javascript | ||
with open(self._folder.get_abs_path(self.files.value), "rb") as fobj: | ||
b64 = base64.b64encode(fobj.read()) | ||
payload = b64.decode() | ||
js = Javascript( | ||
""" | ||
var link = document.createElement('a'); | ||
link.href = "data:;base64,{payload}" | ||
link.download = "{filename}" | ||
document.body.appendChild(link); | ||
link.click(); | ||
document.body.removeChild(link); | ||
""".format(payload=payload,filename=self.files.value) | ||
) | ||
display(js) | ||
|
||
class BandsDataVisualizer(ipw.VBox): | ||
"""Visualizer class for BandsData object""" | ||
def __init__(self, bands, **kwargs): | ||
from bokeh.plotting import figure | ||
from bokeh.io import show, output_notebook | ||
output_notebook(hide_banner=True) | ||
out = ipw.Output() | ||
with out: | ||
plot_info = bands._get_bandplot_data(cartesian=True, join_symbol="|") | ||
y = plot_info['y'].transpose().tolist() | ||
x = [plot_info['x'] for i in range(len(y))] | ||
labels = plot_info['labels'] | ||
p = figure(y_axis_label='Dispersion ({})'.format(bands.units)) | ||
p.multi_line(x, y, line_width=2) | ||
p.xaxis.ticker = [l[0] for l in labels] | ||
p.xaxis.major_label_overrides = {int(l[0]) if l[0].is_integer() else l[0]:l[1] for l in labels} | ||
# int(l[0]) if l[0].is_integer() else l[0] | ||
# This trick was suggested here: https://github.com/bokeh/bokeh/issues/8166#issuecomment-426124290 | ||
show(p) | ||
children = [out] | ||
super(BandsDataVisualizer, self).__init__(children, **kwargs) |
Oops, something went wrong.