-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfullscratch_pairing_botsu2.py
259 lines (206 loc) · 6.48 KB
/
fullscratch_pairing_botsu2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from collections import namedtuple
import hashlib
Point = namedtuple("Point", "x y")
O = 'Origin'
def tocomp(obj):
if type(obj) == int or type(obj) == Mod:
return Complex(obj, 0)
if type(obj) == Complex:
return obj
class Complex(object):
def __init__(self, r, i):
self.r = r
self.i = i
def __mul__(self, other):
k = tocomp(other)
return Complex(self.r*k.r - self.i*k.i, self.r*k.i + self.i*k.r)
def __rmul__(self, other):
k = tocomp(other)
return k * self
def __add__(self, other):
k = tocomp(other)
return Complex(self.r + k.r, self.i + k.i)
def __truediv__(self, other):
k = tocomp(other)
s = k.r**2 + k.i**2
return Complex((self.r*k.r + self.i*k.i) / s, (self.i*k.r - self.r*k.i) / s)
def __rtruediv__(self, other):
k = tocomp(other)
return k / self
def __sub__(self, other):
k = tocomp(other)
return Complex(self.r - k.r, self.i - k.i)
def __neg__(self):
return Complex(-self.r, -self.i)
def __pow__(self, n):
bs = format(n, 'b')[::-1]
tmp = self
result = Complex(1, 0)
for i in bs:
if i == "1":
result = result * tmp
tmp = tmp*tmp
return result
def __eq__(self, other):
k = tocomp(other)
return self.r == k.r and self.i == k.i
def __repr__(self):
return str(self.r) + " + " + str(self.i) + "i"
def tomod(obj, p):
if type(obj) == Mod:
return Mod(obj.n, p)
if type(obj) == int:
return Mod(obj, p)
class Mod(object):
def __init__(self, n, p):
self.n = n % p
self.p = p
def __mul__(self, other):
k = tomod(other, self.p)
return Mod(self.n * k.n, self.p)
def __rmul__(self, other):
k = tomod(other, self.p)
return k * self
def __add__(self, other):
k = tomod(other, self.p)
return Mod(self.n + k.n, self.p)
def __radd__(self, other):
k = tomod(other, self.p)
return k + self
def __truediv__(self, other):
k = tomod(other, self.p)
return Mod(self.n * pow(k.n, self.p - 2, self.p), self.p)
def __rtruediv__(self, other):
k = tomod(other, self.p)
return k / self
def __sub__(self, other):
k = tomod(other, self.p)
return Mod(self.n - k.n, self.p)
def __rsub__(self, other):
k = tomod(other, self.p)
return k - self
def __neg__(self):
return Mod(-self.n, self.p)
def __pow__(self, k):
return Mod(pow(self.n, k, self.p), self.p)
def __eq__(self, other):
k = tomod(other, self.p)
return self.n % self.p == k.n % self.p
def __repr__(self):
return str(self.n % self.p) + " % " + str(self.p)
class Curve:
def __init__(self, a, b):
self.a = a
self.b = b
def valid(self, P):
if P == O:
return True
else:
return (P.y**2 - (P.x**3 + self.a*P.x + self.b)) == 0
def inv(self, P):
if P == O:
return P
return Point(P.x, -P.y)
def add(self, P, Q):
if not (self.valid(P) and self.valid(Q)):
raise ValueError("Invalid inputs")
# Deal with the special cases where either P, Q, or P + Q is
# the origin.
if P == O:
result = Q
elif Q == O:
result = P
elif Q == self.inv(P):
result = O
else:
# Cases not involving the origin.
if P == Q:
dydx = (3 * P.x**2 + self.a) / (2 * P.y)
else:
dydx = (Q.y - P.y) / (Q.x - P.x)
x = dydx**2 - P.x - Q.x
y = dydx * (P.x - x) - P.y
result = Point(x, y)
assert self.valid(result)
return result
def mul(self, P, n):
bs = format(n, 'b')[::-1]
tmp = P
result = O
for i in bs:
if i == "1":
result = self.add(result, tmp)
tmp = self.add(tmp, tmp)
return result
def miller(self, P, Q, l):
def g(P1, P2):
if P1 == 'Origin':
return 1
if self.inv(P1) == P2:
return Q.x - P1.x
if P1 == P2:
lam = (3*P1.x + self.a)/(2*P1.y)
else:
lam = (P2.y - P1.y)/(P2.x - P1.x)
return Q.y - lam*(Q.x - P1.x) - P1.y
V = P
f = 1
bs = format(l, 'b')[1:]
for i in bs:
V_dbl = self.add(V, V)
f = (f*f*g(V, V))/(g(V_dbl, self.inv(V_dbl)))
V = V_dbl
if i == '1':
V_add = self.add(V, P)
f = f*(g(V, P))/(g(V_add, self.inv(V_add)))
V = V_add
assert V == self.mul(P, l)
assert V == 'Origin'
return f
if __name__ == "__main__":
p = 24048719
E = Curve(Mod(2, p), Mod(3, p))
P1 = Point(Mod(17334095, p), Mod(5644719, p))
P2 = Point(Mod(10356700, p), Mod(18392425, p))
print(E.valid(P1))
print(E.valid(P2))
"""
PP = 'Origin'
for i in range(p**2):
PP = E.add(PP, P)
if PP == 'Origin':
r = i + 1
break
def ssqq(x, y):
return math.sqrt((math.sqrt(x**2+y**2)+x)/2)
list(filter(lambda S: S[0].is_integer(), map(lambda R: [ssqq(R.r, R.i), R], [Complex(x,y)**3 + Complex(x,y)*Complex(13, 19)/2 + Complex(19, 23) for x in range(3, 10) for y in range(3, 10)])))
Q = Point(
Complex(
Mod(, p),
Mod(, p)),
Complex(
Mod(, p),
Mod(, p)))
"""
#X = E1.mul(P1, 10000)
#Y = E2.mul(P2, 50000)
# two prime orders
l1 = 7933
l2 = 379
l3 = 7933*379
# check order
print(E.mul(P1, l1))
print(E.mul(P2, l2))
print(E.miller(E.mul(P2,10), E.mul(P1,10), l2))
print(E.miller(E.mul(P2,100), E.mul(P1,1), l2))
w = lambda X, Y: E.miller(X, Y, l3)/E.miller(Y, X, l3)
print(w(E.mul(P1, 10), E.mul(P2, 10)))
print(w(E.mul(P1, 100), E.mul(P2, 1)))
print(w(E.mul(P1, 1), E.mul(P2, 100)))
print(w(E.mul(P1, 1), E.mul(P2, 1)))
print(w(E.mul(P1, 1), E.mul(P2, 1))**100)
print(w(E.add(E.mul(P1, 10), E.mul(P1, 20)), E.mul(P2, 30)))
print(w(E.mul(P1, 10), E.mul(P2, 30)) + w(E.mul(P1, 20), E.mul(P2, 30)))
#print(w(E1.mul(P1, 1), E2.mul(P2, 1)))
#print(e(X, Y))
#print(e(Z, W))