-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
219 lines (178 loc) · 9.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import pandas as pd
from tqdm import tqdm
import os
import argparse
import time
import shutil
from decimal import Decimal
tf.logging.set_verbosity(tf.logging.ERROR)
from densenet import DenseNet169
from pipeline import ImageReader, load_dataframes, get_body_part_dataframes, read_labeled_image_list
BATCH_SIZE = 8
DATA_DIRECTORY = '/home/anicet/Datasets/' #'/scratch/hnkmah001/Datasets/'
LEARNING_RATE = 1e-4
MOMENTUM = 1e-4
WEIGHT_DECAY = 1e-4
NUM_EPOCHS = 20
BODY_PART = 'all'
RESTORE_FROM = None
SNAPSHOT_DIR = './snapshots/'#'/scratch/hnkmah001/densenet/snapshots/'
WEIGHTS_PATH = '/home/anicet/Pretrained_models/densenet169.pkl'#'/scratch/hnkmah001/Pretrained_models/densenet169.pkl'
SUMMARIES_DIR = './summaries/'#'/scratch/hnkmah001/densenet/summaries/'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="densenet_169 Network for MURA")
parser.add_argument("--batch_size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--data_dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the MURA dataset.")
parser.add_argument("--bpart", type=str, default=BODY_PART,
help="The body part to use for training")
parser.add_argument("--learning_rate", type=float, default=LEARNING_RATE,
help="Learning rate for training.")
#parser.add_argument("--momentum", type=float, default=MOMENTUM,
# help="Momentum parameter")
parser.add_argument("--weight_decay", type=float, default=WEIGHT_DECAY,
help="Weight decay parameter")
parser.add_argument("--num_epochs", type=int, default=NUM_EPOCHS,
help="Number of training epochs.")
parser.add_argument("--restore_from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--snapshot_dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weights_path", type=str, default=WEIGHTS_PATH,
help="Path to the file with pretrained weights. ")
parser.add_argument("--summaries_dir", type=str, default= SUMMARIES_DIR,
help="Path to the file where variables are saved for TensorBoard.")
return parser.parse_args()
def save(saver, sess, logdir, step):
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(loader, sess, ckpt_path):
'''Load trained weights.
Args:
loader: TensorFlow saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
loader.restore(sess, ckpt_path)
print("\nRestored model parameters from {}".format(ckpt_path))
def main():
"""Create the model and start the training."""
args = get_arguments()
# Create queue coordinator.
coord = tf.train.Coordinator()
train, valid, valid_studies = load_dataframes(DATA_DIR = args.data_dir)
train_df, valid_df, valid_studies_df = get_body_part_dataframes(train, valid, valid_studies, args.bpart)
train_df_list = read_labeled_image_list(train_df) # Returns a tuple (train_path_list, train_label_list)
valid_df_list = read_labeled_image_list(valid_df)
number_of_training_images = len(train_df_list[1]) # Numer of labels
number_of_validation_images = len(valid_df_list[1])
NUM_STEPS = args.num_epochs*number_of_training_images//args.batch_size
VALIDATION_STEPS = 5 #number_of_validation_images #// args.batch_size
EVALUATE_EVERY = 10 #number_of_training_images // args.batch_size # Evaluate every epoch
A_train = sum(train_df_list[1]) # Number of abnormals examples in the training dataset
N_train = number_of_training_images - A_train # Number of normal examples in the training dataset
wT1 = N_train/(A_train+N_train)
wT0 = A_train/(A_train+N_train)
A_valid = sum(valid_df_list[1]) # Number of abnormal examples in the validation dataset
N_valid = number_of_validation_images - A_valid # Number of normal examples in the validation dataset
df = pd.DataFrame([[A_train, A_valid, wT1], [N_train, N_valid, wT0],[A_train+N_train, A_valid+N_valid, wT0+wT1]],
index = ["Abnormal", "Normal", "Total"],
columns = ["Train", "Valid", "Loss weights"]
)
print("\n%s dataset summary: \n "%args.bpart)
print(df)
print("\n")
# Load reader.
with tf.name_scope("Inputs"):
reader = ImageReader(train_df, valid_df, args.bpart)
image_batch, label_batch = reader.dequeue_train(args.batch_size)
val_image_batch, val_label_batch = reader.dequeue_val(1)
# Create network with weights initialized from DenseNet169 pretrained on ImageNet
net = DenseNet169(args.weights_path)
# Define loss and accuracy
loss = net.weighted_cross_entropy_loss(image_batch, label_batch, w0=wT0, w1=wT1, is_training=True, scope='train_loss')
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
acc = net.accuracy(image_batch, label_batch, is_training=True, scope='train_accuracy')
# Define summaries for TensorBoard visualization
loss_summary = tf.summary.scalar('training loss', loss)
val_image_summary = tf.summary.image('validation input', val_image_batch)
# Optimization ops
learning_rate = tf.constant(args.learning_rate)
optimiser = tf.train.AdamOptimizer(learning_rate=learning_rate)
trainable_variables = tf.trainable_variables()
all_variables = tf.all_variables()
with tf.control_dependencies(update_ops):
optim = optimiser.minimize(loss, var_list=trainable_variables)
# Track performance on the validation set during training
val_loss = net.weighted_cross_entropy_loss(val_image_batch, val_label_batch, w0=wT0,
w1=wT1, is_training=False, scope='Validation_loss')
val_acc = net.accuracy(val_image_batch, val_label_batch, is_training=False, scope='Validation_accuracy')
#config = tf.ConfigProto()
config = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
if os.path.exists(args.summaries_dir+"%s"%args.bpart):
shutil.rmtree(args.summaries_dir+"%s"%args.bpart)
train_writer = tf.summary.FileWriter(args.summaries_dir+"%s"%args.bpart+"/train", sess.graph)
val_writer = tf.summary.FileWriter(args.summaries_dir+"%s"%args.bpart+"/val")
init_g = tf.global_variables_initializer()
init_l = tf.local_variables_initializer()
sess.run([init_g, init_l])
# Saver for storing the last 40 checkpoints of the model.
saver = tf.train.Saver(var_list=all_variables, max_to_keep=40)
if args.restore_from is not None:
load(saver, sess, args.restore_from)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# Iterate over training steps.
starting_time=time.asctime(time.localtime())
for step in range(NUM_STEPS+1):
start_time = time.time()
if step % EVALUATE_EVERY == 0:
# Calculate the validation loss and accuracy over the whole validation set
val_loss_list = []
val_acc_list = []
for i in tqdm(range(VALIDATION_STEPS), desc="Validation"):
val_image_summary_value, val_loss_i, val_acc_i = sess.run([val_image_summary, val_loss, val_acc])
val_loss_list.append(val_loss_i)
val_acc_list.append(val_acc_i)
val_writer.add_summary(val_image_summary_value, step)
val_loss_mean = np.mean(val_loss_list) # validation loss of the whole validation data
val_acc_mean = np.mean(val_acc_list)
# Reduce the learning rate if the valiatiation loss plateaus after one epoch
if step > EVALUATE_EVERY:
if val_loss_mean >= previous_val_loss:
learning_rate = tf.divide(learning_rate, 10.0)
print("Reducing the learning rate\n")
previous_val_loss = val_loss_mean
save(saver, sess, args.snapshot_dir+"%s"%args.bpart, step)
summary=tf.Summary()
summary.value.add(tag='validation loss', simple_value = val_loss_mean)
summary.value.add(tag='validation accuracy', simple_value= val_acc_mean)
val_writer.add_summary(summary, step)
duration = time.time() - start_time
print("\nSTEP {:d}/{:d} VALIDATION LOSS = {:.4f}, \t ACC = {:.4f}, \t ({:.3f} sec/step)".format(step, NUM_STEPS, val_loss_mean, val_acc_mean, duration))
else:
loss_summary_value, loss_value, acc_value, lr, _ = sess.run([loss_summary, loss, acc, learning_rate, optim])
duration = time.time() - start_time
train_writer.add_summary(loss_summary_value, step)
print("step {:d}/{:d} \t loss = {:.4f}, \t acc = {:.4f},\t lr = {:.1e}, \t ({:.3f} sec/step)".format(step, NUM_STEPS, loss_value, acc_value, Decimal(lr.item()), duration))
end_time=time.asctime(time.localtime())
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()