|
| 1 | +# Copyright 2024 DeepMind Technologies Limited |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | +"""benchmarks for rollout function.""" |
| 16 | + |
| 17 | +import os |
| 18 | +import time |
| 19 | + |
| 20 | +import mujoco |
| 21 | +from mujoco import rollout |
| 22 | +import numpy as np |
| 23 | + |
| 24 | +def benchmark_rollout(model_file, nthread=os.cpu_count()): |
| 25 | + print('\n', model_file) |
| 26 | + bench_steps = int(1e4) # Run approximately bench_steps per thread |
| 27 | + |
| 28 | + # A grid search |
| 29 | + nroll = [int(1e0), int(1e1), int(1e2), int(1e3)] |
| 30 | + nstep = [int(1e0), int(1e1), int(1e2), int(1e3)] |
| 31 | + nnroll, nnstep = np.meshgrid(nroll, nstep) |
| 32 | + nroll_nstep_grid = np.stack((nnroll.flatten(), nnstep.flatten()), axis=1) |
| 33 | + |
| 34 | + # Typical nroll/nstep for sysid, rl, mpc respectively |
| 35 | + nroll = [50, 3000, 100] |
| 36 | + nstep = [1000, 1, 50] |
| 37 | + nroll_nstep_app = np.stack((nroll, nstep), axis=1) |
| 38 | + |
| 39 | + nroll_nstep = np.vstack((nroll_nstep_grid, nroll_nstep_app)) |
| 40 | + |
| 41 | + chunk_divisors = [10, 1, 2, 4, 8, 16, 32, 64, 128] # First element is the nominal divisor |
| 42 | + |
| 43 | + m = mujoco.MjModel.from_xml_path(model_file) |
| 44 | + print('nv:', m.nv) |
| 45 | + |
| 46 | + m_list = [m]*np.max(nroll) # models do not need to be copied |
| 47 | + d_list = [mujoco.MjData(m) for i in range(nthread)] |
| 48 | + |
| 49 | + initial_state = np.zeros((mujoco.mj_stateSize(m, mujoco.mjtState.mjSTATE_FULLPHYSICS),)) |
| 50 | + mujoco.mj_getState(m, d_list[0], initial_state, mujoco.mjtState.mjSTATE_FULLPHYSICS) |
| 51 | + initial_state = np.tile(initial_state, (np.max(nroll), 1)) |
| 52 | + |
| 53 | + for i in range(nroll_nstep.shape[0]): |
| 54 | + nroll_i = int(nroll_nstep[i, 0]) |
| 55 | + nstep_i = int(nroll_nstep[i, 1]) |
| 56 | + |
| 57 | + nbench = max(1, int(np.round(min(nthread, nroll_i) * bench_steps / nstep_i / nroll_i))) |
| 58 | + |
| 59 | + chunk_divisors_stats = [] |
| 60 | + for chunk_divisor in chunk_divisors: |
| 61 | + times = [time.time()] |
| 62 | + for i in range(nbench): |
| 63 | + rollout.rollout(m_list[:nroll_i], d_list, initial_state[:nroll_i], skip_checks=True, nstep=nstep_i, chunk_divisor=chunk_divisor) |
| 64 | + times.append(time.time()) |
| 65 | + dt = np.diff(times) |
| 66 | + chunk_divisors_stats.append((np.min(dt), np.max(dt), np.mean(dt), np.std(dt))) |
| 67 | + chunk_divisors_stats = np.array(chunk_divisors_stats) |
| 68 | + |
| 69 | + slowest_chunk_divisor_i = np.argmax(chunk_divisors_stats[:, 2]) |
| 70 | + slowest_chunk_divisor = chunk_divisors[slowest_chunk_divisor_i] |
| 71 | + |
| 72 | + fastest_chunk_divisor_i = np.argmin(chunk_divisors_stats[:, 2]) |
| 73 | + fastest_chunk_divisor = chunk_divisors[fastest_chunk_divisor_i] |
| 74 | + |
| 75 | + print('nbench: {:06d} nroll: {:04d} nstep: {:04d} ' |
| 76 | + 'mean_nom {:0.4f} mean_slow: {:0.4f} mean_fast: {:0.4f} chunk_div_slow {:03d} chunk_div_fast {:03d} fast/slow {:0.3f} fast/nom {:0.3f}'.format( |
| 77 | + nbench, nroll_i, nstep_i, |
| 78 | + chunk_divisors_stats[0, 2], # nominal chunk divisor |
| 79 | + chunk_divisors_stats[slowest_chunk_divisor_i, 2], |
| 80 | + chunk_divisors_stats[fastest_chunk_divisor_i, 2], |
| 81 | + slowest_chunk_divisor, fastest_chunk_divisor, |
| 82 | + chunk_divisors_stats[fastest_chunk_divisor_i, 2] / chunk_divisors_stats[slowest_chunk_divisor_i, 2], |
| 83 | + chunk_divisors_stats[fastest_chunk_divisor_i, 2] / chunk_divisors_stats[0, 2])) |
| 84 | + |
| 85 | +if __name__ == '__main__': |
| 86 | + print('============================================================') |
| 87 | + print('small to medium models') |
| 88 | + print('============================================================') |
| 89 | + |
| 90 | + benchmark_rollout(model_file='../../../dm_control/dm_control/suite/hopper.xml') |
| 91 | + benchmark_rollout(model_file='../../../mujoco_menagerie/unitree_go2/scene.xml') |
| 92 | + benchmark_rollout(model_file='../../model/humanoid/humanoid.xml') |
| 93 | + |
| 94 | + print() |
| 95 | + print('============================================================') |
| 96 | + print('very large models') |
| 97 | + print('============================================================') |
| 98 | + benchmark_rollout(model_file='../../model/cards/cards.xml') |
| 99 | + benchmark_rollout(model_file='../../model/humanoid/humanoid100.xml') |
| 100 | + benchmark_rollout(model_file='../../test/benchmark/testdata/humanoid200.xml') |
| 101 | + # benchmark_rollout(model_file='../../model/humanoid/100_humanoids.xml') |
0 commit comments