-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
272 lines (211 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#=============================================================================
# Programme:
#=============================================================================
#=============================================================================
# Modules
#=============================================================================
# Standard modules
import numpy as np
import json
import os
import torch
import torch.utils.data as data
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
from torchvision import transforms
from torch.nn import CrossEntropyLoss
import torch.optim as optim
# Custom modules
from logger import logProgress
from data_loader import loadImages, loadLabels
from gnb import GaussianNaiveBayes
from knn import kNearestNeighbours
from nn import NeuralNetwork
from cnn import ConvolutionalNeuralNetwork
from gnn import GraphNeuralNetwork
from predict_plotter import predictPlotter
#=============================================================================
# Functions
#=============================================================================
#=============================================================================
# Variables
#=============================================================================
# Path to the JSON metadata file
metadataFilePath = "configurations.json"
# Use GPU resources for DL model if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Size of image dimensons for Fashion MNIST dataset
imageDimensions=28
# Pixel normalisation value
pixels = 255.
# Seed for repeatable random initialisations
seed = np.random.seed(123456789)
torch.manual_seed(123456789)
# Set loss function for DL methods
criterion = CrossEntropyLoss()
# Class dictionary
classes = {
0: "T-shirt/top",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle boot"
}
# Number of classes in Fashion MNIST dataset
numClasses= 10
#=============================================================================
# Programme exectuion
#=============================================================================
if __name__ == "__main__":
#==========================================================================
# Start programme
#==========================================================================
# Logging
logProgress("Starting programme...")
#==========================================================================
# Data loading
#==========================================================================
# Reading the JSON configuration file
logProgress("Importing metadata...")
with open(metadataFilePath, "r") as metadata_file:
jsonData = json.load(metadata_file)
logProgress("Imported metadata")
# Setting metadata variables
loggingName = jsonData["loggingName"]
runNumber = jsonData["runNumber"]
dataPath = jsonData["dataPath"]
outputFigPath = jsonData["outputFigPath"]
outputValPath = jsonData["outputValPath"]
outputModelPath = jsonData["outputModelPath"]
# Update metadata file for next run
logProgress("Updating metadata file...")
jsonData["runNumber"] = str(int(runNumber) + 1)
with open(metadataFilePath, "w") as metadata_file:
json.dump(jsonData, metadata_file, indent=4)
logProgress("Updated metadata file")
## Load data for ML methods
# Paths to the downloaded data files
trainImagesPath = os.path.join(dataPath, "train-images-idx3-ubyte.gz")
trainLabelsPath = os.path.join(dataPath, "train-labels-idx1-ubyte.gz")
testImagesPath = os.path.join(dataPath, "t10k-images-idx3-ubyte.gz")
testLabelsPath = os.path.join(dataPath, "t10k-labels-idx1-ubyte.gz")
# # Load the datasets
logProgress("Loading ML data...")
trainImages = loadImages(trainImagesPath)
trainLabels = loadLabels(trainLabelsPath)
testImages = loadImages(testImagesPath)
testLabels = loadLabels(testLabelsPath)
logProgress("Loaded ML data")
## Load data for DL methods
# Transformations applied on each image =>
# first make them a tensor, then normalise them in the range -1 to 1
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
# Loading the training dataset and split it into training and validation parts
trainDataFull = FashionMNIST(root=dataPath, train=True, transform=transform, download=True)
trainData, valData = data.random_split(trainDataFull , [50000, 10000])
# Loading the test set
testData = FashionMNIST(root=dataPath,train=False, transform=transform, download=True)
# Define a set of data loaders
trainData = DataLoader(trainData, batch_size=64, shuffle=True, drop_last=False)
valData = DataLoader(valData, batch_size=64, shuffle=False, drop_last=False)
testData = DataLoader(testData, batch_size=64, shuffle=False, drop_last=False)
#==========================================================================
# Data pre-processing
#==========================================================================
# pre-process images
logProgress("Pre-processing image data...")
trainImages = trainImages.reshape(trainImages.shape[0], -1) / pixels
testImages = testImages.reshape(testImages.shape[0], -1) / pixels
# Take random samples here for later ML predictions
randomIndices = [0, 1000]
randomImages = [testImages[index] for index in randomIndices]
randomLabels = [testLabels[index] for index in randomIndices]
logProgress("Pre-processed image data")
#==========================================================================
# Methods to run
#==========================================================================
# Gaussian Naive-Bayes
logProgress("Running Gaussian Naive-Bayes...")
GNB = GaussianNaiveBayes(smoothing=1000.0)
print(f"Gaussian Naive-Bayes has {2 * numClasses + 1} parameters")
GNB.train(trainImages, trainLabels)
logProgress("Naive-Bayes completed")
logProgress("Validating Gaussian Naive-Bayes...")
accuracyGNB = GNB.evaluate(testImages, testLabels)
logProgress("Gaussian Naive-Bayes validation completed")
GNB.saveModel(f"{outputModelPath}{loggingName}_{runNumber}_gaussian_naive_bayes_model_parameters.txt")
logProgress("Gaussian Naive-Bayes model saved")
predictionGNB = GNB.predict(np.expand_dims(randomImages[0], axis=0))
predictPlotter(randomImages[0].reshape(28, 28), randomLabels[0], predictionGNB[0], classes, f"{outputValPath}{loggingName}_{runNumber}_prediction_gnb.png")
logProgress("Gaussian Naive-Bayes example prediction")
# k-Nearest neighbours
logProgress("Training k-Nearest neighbours...")
kNN = kNearestNeighbours(k=1, nSplits=10)
kNN.train(f"{outputFigPath}{loggingName}_{runNumber}_", trainImages, trainLabels, kmin=1, kmax=10)
logProgress("k-Nearest neighbours training completed")
logProgress("Validating k-Nearest neighbours...")
accuracykNN = kNN.evaluate(testImages, testLabels)
logProgress("k-Nearest neighbours validation completed")
kNN.saveModel(f"{outputModelPath}{loggingName}_{runNumber}_knn_model_parameters.txt")
logProgress("k-Nearest neighbours model saved")
predictionkNN = kNN.predict(np.expand_dims(randomImages[1], axis=0))
predictPlotter(randomImages[1].reshape(28, 28), randomLabels[1], predictionkNN[0], classes, f"{outputValPath}{loggingName}_{runNumber}_prediction_knn.png")
logProgress("k-Nearest neighbours example prediction")
# Neural Network
logProgress("Training neural network...")
NN = NeuralNetwork(imageDimensions=imageDimensions, numClasses=numClasses)
NNParams = sum([p.numel() for p in NN.parameters()])
print(f"Neural network has {NNParams} parameters")
optimizer = optim.Adam(NN.parameters(), lr=0.001)
NN.trainModel(trainData, valData, criterion, optimizer, f"{outputFigPath}{loggingName}_{runNumber}_nn_", epochs=20)
logProgress("neural network training completed")
logProgress("Validating neural network...")
accuracyNN = NN.evaluate(testData)
logProgress("Neural network validation completed")
NN.saveModel(f"{outputModelPath}{loggingName}_{runNumber}_nn_model.pth")
logProgress("Neural network model saved")
predictionNN = NN.predict(testData.dataset[2000][0])
predictPlotter(testData.dataset[2000][0].squeeze(), testData.dataset[2000][1], predictionNN, classes, f"{outputValPath}{loggingName}_{runNumber}_prediction_nn.png")
logProgress("Neural network example prediction")
# Convolutional neural network
logProgress("Training convolutional neural network...")
CNN = ConvolutionalNeuralNetwork()
CNNParams = sum([p.numel() for p in CNN.parameters()])
print(f"Convolutional neural network has {CNNParams} parameters")
optimizer = optim.Adam(CNN.parameters(), lr=0.001)
CNN.trainModel(trainData, valData, criterion, optimizer, f"{outputFigPath}{loggingName}_{runNumber}_cnn_", epochs=20)
logProgress("Convolutional neural network training completed")
logProgress("Validating convolutional neural network...")
accuracyCNN = CNN.evaluate(testData)
logProgress("Convolutional neural network validation completed")
CNN.saveModel(f"{outputModelPath}{loggingName}_{runNumber}_cnn_model.pth")
logProgress("Convolutional neural network model saved")
predictionCNN = CNN.predict(testData.dataset[3000][0].unsqueeze(1))
predictPlotter(testData.dataset[3000][0].squeeze(), testData.dataset[3000][1], predictionCNN, classes, f"{outputValPath}{loggingName}_{runNumber}_prediction_cnn.png")
logProgress("Convolutional neural network example prediction")
# Graph neural network
logProgress("Training Graph neural network...")
GNN = GraphNeuralNetwork(imageDimensions=imageDimensions, numClasses=numClasses, predEdge=True)
GNNParams = sum([p.numel() for p in GNN.parameters()])
print(f"Graph neural network has {GNNParams} parameters")
optimizer = optim.Adam(GNN.parameters(), lr=0.001)
GNN.trainModel(trainData, valData, criterion, optimizer, f"{outputFigPath}{loggingName}_{runNumber}_gnn_", epochs=5)
logProgress("Graph neural network training completed")
logProgress("Validating geometric neural network...")
accuracyGNN = GNN.evaluate(testData)
logProgress("Graph neural network validation completed")
GNN.saveModel(f"{outputModelPath}{loggingName}_{runNumber}_gnn_model.pth")
logProgress("Graph neural network model saved")
predictionGNN = GNN.predict(testData.dataset[4000][0])
predictPlotter(testData.dataset[4000][0].squeeze(), testData.dataset[4000][1], predictionGNN, classes, f"{outputValPath}{loggingName}_{runNumber}_prediction_gnn.png")
logProgress("Graph neural network example prediction")
#==========================================================================
# Programme completion
#==========================================================================
logProgress("Completed programme")