-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_targets.R
252 lines (229 loc) · 7.62 KB
/
_targets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
library("conflicted")
library("MiscMetabar")
library("targets")
library("tarchetypes")
library("here")
library("autometric")
if (tar_active()) {
log_start(
path = "data/data_final/autometric_log.txt",
seconds = 1
)
}
here::i_am("_targets.R")
source(here("R/functions.R"))
lapply(list.files("~/Nextcloud/IdEst/Projets/MiscMetabar/R/", full.names = TRUE), source)
seq_len_min <- 200
fw_primer_sequences <- XXXX
rev_primer_sequences <- XXXX
n_threads <- 4
refseq_file_name <- "XXX.fasta"
sam_data_file_name <- "sam_data.csv"
sample_col_name <- "samples_names"
set.seed(22)
tar_plan(
#> Place for file input
tar_target(
name = file_sam_data_csv,
command = here("data/data_raw/metadata", sam_data_file_name),
format = "file"
),
tar_target(
name = file_refseq_taxo,
command = here("data/data_raw/refseq/", refseq_file_name),
format = "file"
),
tar_target(
name = fastq_files_folder,
command = here("data/data_raw/rawseq/"),
format = "file"
),
#> Match samples names from fastq files and metadata sam_data
#> ———————————————————
tar_target(s_d,
sam_data_matching_names(
path_sam_data = here("data/data_raw/metadata", sam_data_file_name),
path_raw_seq = fastq_files_folder,
sample_col_name = sample_col_name,
#pattern_remove_sam_data = "XXX",
#pattern_remove_fastq_files = "_L001.*",
prefix = "samp_"
)
),
#> Paired end analysis
#> ———————————————————
##> Remove primers
tar_target(
cutadapt,
cutadapt_remove_primers(
path_to_fastq = fastq_files_folder,
primer_fw = fw_primer_sequences,
primer_rev = rev_primer_sequences,
folder_output = here("data/data_intermediate/seq_wo_primers/"),
nproc = n_threads,
return_file_path = TRUE,
args_before_cutadapt = "source ~/miniforge3/etc/profile.d/conda.sh && conda activate cutadaptenv && "
),
format = "file"
),
tar_target(data_raw, {
cutadapt
list_fastq_files(path = here::here("data/data_intermediate/seq_wo_primers/"))
}),
##> Classical dada2 pipeline
tar_target(data_fnfs, data_raw$fnfs),
tar_target(data_fnrs, data_raw$fnrs),
### Pre-filtered data with low stringency
tar_target(
filtered,
filter_trim(
output_fw = paste(
getwd(),
here("/data/data_intermediate/filterAndTrim_fwd"),
sep = ""
),
output_rev = paste(
getwd(),
here("/data/data_intermediate/filterAndTrim_rev"),
sep = ""
),
fw = data_fnfs,
rev = data_fnrs,
multithread = n_threads,
compress = TRUE
)
),
### Dereplicate fastq files
tar_target(derep_fs, derepFastq(filtered[[1]]), format = "qs"),
tar_target(derep_rs, derepFastq(filtered[[2]]), format = "qs"),
### Learns the error rates
tar_target(err_fs, learnErrors(derep_fs, multithread = n_threads), format = "qs"),
tar_target(err_rs, learnErrors(derep_rs, multithread = n_threads), format = "qs"),
### Make amplicon sequence variants
tar_target(ddF, dada(derep_fs, err_fs, multithread = n_threads), format = "qs"),
tar_target(ddR, dada(derep_rs, err_rs, multithread = n_threads), format = "qs"),
### Merge paired sequences
tar_target(
merged_seq,
mergePairs(
dadaF = ddF,
dadaR = ddR,
derepF = derep_fs,
derepR = derep_rs
),
format = "qs"
),
### Build a a table of ASV x Samples
tar_target(seq_tab_Pairs, makeSequenceTable(merged_seq)),
#> end Paired-end analysis
#> ———————————————————————
##> Filtering sequences
### Remove chimera
tar_target(seqtab_wo_chimera, chimera_removal_vs(seq_tab_Pairs)),
### Remove sequences based on length
tar_target(seqtab, seqtab_wo_chimera[, nchar(colnames(seqtab_wo_chimera)) >= seq_len_min]),
##> Load sample data and rename samples
tar_target(
sam_tab,
rename_samples(sample_data(s_d$sam_data), names_of_samples = s_d$sam_data$samples_names_common)
),
tar_target(samp_n_otu_table,
s_d$sam_names_matching$common_names[match(rownames(seqtab), s_d$sam_names_matching$raw_fastq)]
),
tar_target(asv_tab, otu_table(
rename_samples(
otu_table(seqtab[!(duplicated(samp_n_otu_table) | duplicated(samp_n_otu_table, fromLast=TRUE)),], taxa_are_rows = FALSE),
names_of_samples = samp_n_otu_table[!(duplicated(samp_n_otu_table) | duplicated(samp_n_otu_table, fromLast=TRUE))]),
taxa_are_rows = FALSE
)),
tar_target(
tax_tab,
assignTaxonomy(
seqtab,
refFasta = file_refseq_taxo,
taxLevels
= c(
"Kingdom",
"Phyla",
"Class",
"Order",
"Family",
"Genus",
"Species"
),
multithread = n_threads
)
),
##> Create the phyloseq object 'data_asv' with
### (i) table of asv,
### ii) taxonomic table,
### (iii) sample data and
### (iv) references sequences
tar_target(d_asv, add_dna_to_phyloseq(
phyloseq(asv_tab, sam_tab, tax_table(
as.matrix(tax_tab, dimnames = rownames(tax_tab))
))
)),
##> Create post-clustering ASV into OTU using vsearch
tar_target(d_vs, asv2otu(
d_asv, method = "vsearch", tax_adjust = 0
)),
##> Clean post-clustering OTU using mumu
tar_target(d_vs_mumu, mumu_pq(d_vs)$new_physeq),
##> Make a rarefied dataset
tar_target(d_vs_mumu_rarefy, rarefy_even_depth(d_vs_mumu, sample.size = 2000)),
##> Create the phyloseq object 'd_asv' with
tar_target(track_sequences_samples_clusters, track_wkflow(
list(
"Raw Forward sequences" = unlist(list_fastq_files(fastq_files_folder, paired_end = FALSE)),
"Forward wo primers" = unlist(list_fastq_files(here::here("data/data_intermediate/seq_wo_primers/"), paired_end = FALSE)),
"Forward sequences" = ddF,
"Paired sequences" = seq_tab_Pairs,
"Paired sequences without chimera" = seqtab_wo_chimera,
"Paired sequences without chimera and longer than 200bp" = seqtab,
"ASV denoising" = d_asv,
"OTU after vsearch reclustering at 97%" = d_vs,
"OTU vs after mumu cleaning algorithm" = d_vs_mumu,
"OTU vs + mumu + rarefaction by sequencing depth" = d_vs_mumu_rarefy
)
)),
tar_target(track_by_samples, track_wkflow_samples(
list(
"ASV denoising" = d_asv,
"OTU after vsearch reclustering at 97%" = d_vs,
"OTU vs after mumu cleaning algorithm" = d_vs_mumu,
"OTU vs + mumu + rarefaction by sequencing depth" = d_vs_mumu_rarefy
)
)),
##> Build fastq quality report across the pipeline
### With raw sequences
tar_target(
quality_raw_seq,
fastqc_agg(fastq_files_folder, qc.dir = here("data/data_final/quality_fastqc/raw_seq/"), multiqc=TRUE)
),
### After cutadapt
tar_target(
quality_seq_wo_primers, {cutadapt
fastqc_agg(here("data/data_intermediate/seq_wo_primers/"), qc.dir = here("data/data_final/quality_fastqc/seq_wo_primers/"), multiqc=TRUE)
}),
### After filtering and trimming (separate report for forward and reverse)
tar_target(
quality_seq_filtered_trimmed_FW,
fastqc_agg(here(filtered[[1]]), qc.dir = here("data/data_final/quality_fastqc/filterAndTrim_fwd/"), multiqc=TRUE)
),
tar_target(
quality_seq_filtered_trimmed_REV,
fastqc_agg(here(filtered[[1]]), qc.dir = here("data/data_final/quality_fastqc/filterAndTrim_rev/"), multiqc=TRUE)
),
##> Build bioinformatic quarto report
tar_target(bioinfo_report, {
track_sequences_samples_clusters
quarto::quarto_render(here::here("analysis", "01_bioinformatics.qmd"))
}
)#,
# tar_target(build_website, {
# track_sequences_samples_clusters
# quarto::quarto_render(here::here())
# }
# )
)