forked from jiank2/InFoRM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
399 lines (337 loc) · 13.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import time
import numpy as np
import networkx as nx
import sklearn.preprocessing as skpp
from copy import deepcopy
from scipy.sparse import diags, isspmatrix_coo, triu
def trace(mat):
"""
calculate trace of a sparse matrix
:param mat: scipy.sparse matrix (csc, csr or coo)
:return: Tr(mat)
"""
return mat.diagonal().sum()
def row_normalize(mat):
"""
normalize a matrix by row
:param mat: scipy.sparse matrix (csc, csr or coo)
:return: row-normalized matrix
"""
degrees = np.asarray(mat.sum(axis=1).flatten())
degrees = np.divide(1, degrees, out=np.zeros_like(degrees), where=degrees != 0)
degrees = diags(np.asarray(degrees)[0,:])
return degrees @ mat
def column_normalize(mat):
"""
normalize a matrix by column
:param mat: scipy.sparse matrix (csc, csr or coo)
:return: column-normalized matrix
"""
degrees = np.asarray(mat.sum(axis=0).flatten())
degrees = np.divide(1, degrees, out=np.zeros_like(degrees), where=degrees != 0)
degrees = diags(np.asarray(degrees)[0, :])
return mat @ degrees
def symmetric_normalize(mat):
"""
symmetrically normalize a matrix
:param mat: scipy.sparse matrix (csc, csr or coo)
:return: symmetrically normalized matrix
"""
degrees = np.asarray(mat.sum(axis=0).flatten())
degrees = np.divide(1, degrees, out=np.zeros_like(degrees), where=degrees != 0)
degrees = diags(np.asarray(degrees)[0, :])
degrees.data = np.sqrt(degrees.data)
return degrees @ mat @ degrees
def jaccard_similarity(mat):
"""
get jaccard similarity matrix
:param mat: scipy.sparse.csc_matrix
:return: similarity matrix of nodes
"""
# make it a binary matrix
mat_bin = mat.copy()
mat_bin.data[:] = 1
col_sum = mat_bin.getnnz(axis=0)
ab = mat_bin.dot(mat_bin.T)
aa = np.repeat(col_sum, ab.getnnz(axis=0))
bb = col_sum[ab.indices]
sim = ab.copy()
sim.data /= (aa + bb - ab.data)
return sim
def cosine_similarity(mat):
"""
get cosine similarity matrix
:param mat: scipy.sparse.csc_matrix
:return: similarity matrix of nodes
"""
mat_row_norm = skpp.normalize(mat, axis=1)
sim = mat_row_norm.dot(mat_row_norm.T)
return sim
def filter_similarity_matrix(sim, sigma):
"""
filter value by threshold = mean(sim) + sigma * std(sim)
:param sim: similarity matrix
:param sigma: hyperparameter for filtering values
:return: filtered similarity matrix
"""
sim_mean = np.mean(sim.data)
sim_std = np.std(sim.data)
threshold = sim_mean + sigma * sim_std
sim.data *= sim.data >= threshold # filter values by threshold
sim.eliminate_zeros()
return sim
def get_similarity_matrix(mat, metric=None):
"""
get similarity matrix of nodes in specified metric
:param mat: scipy.sparse matrix (csc, csr or coo)
:param metric: similarity metric
:return: similarity matrix of nodes
"""
if metric == 'jaccard':
return jaccard_similarity(mat.tocsc())
elif metric == 'cosine':
return cosine_similarity(mat.tocsc())
else:
raise ValueError('Please specify the type of similarity metric.')
def power_method(G, c=0.85, maxiter=100, tol=1e-3, personalization=None):
"""
r = cWr + (1-c)e
:param G: Networkx DiGraph created by transition matrix W
:param c: damping factor
:param maxiter: maximum number of iterations
:param tol: error tolerance
:param personalization: personalization for teleporation vector, uniform distribution if None
:param print_msg: boolean to check whether to print number of iterations for convergence or not.
:return: PageRank vector
"""
nnodes = G.number_of_nodes()
if personalization is None:
e = dict.fromkeys(G, 1.0 / nnodes)
else:
e = dict.fromkeys(G, 0.0)
for i in e:
e[i] = personalization[i, 0]
r = deepcopy(e)
for niter in range(maxiter):
rlast = r
r = dict.fromkeys(G, 0)
for n in r:
for nbr in G[n]:
r[n] += c * rlast[nbr] * G[n][nbr]['weight']
r[n] += (1.0 - c) * e[n]
err = sum([abs(r[n] - rlast[n]) for n in r])
if err < tol:
return r
return r
def revised_power_method(G, c=0.85, alpha=1.0, maxiter=100, tol=1e-3, personalization=None):
"""
r = Wr + (1-c)/(1+alpha) e
:param G: Networkx DiGraph created by transition matrix W
:param c: damping factor
:param maxiter: maximum number of iterations
:param tol: error tolerance
:param personalization: personalization for teleporation vector, uniform distribution if None
:return: PageRank vector
"""
nnodes = G.number_of_nodes()
if personalization is None:
e = dict.fromkeys(G, 1.0 / nnodes)
else:
e = dict.fromkeys(G, 0.0)
for i in e:
e[i] = personalization[i, 0]
r = deepcopy(e)
for niter in range(maxiter):
rlast = r
r = dict.fromkeys(G, 0)
for n in r:
for nbr in G[n]:
r[n] += rlast[nbr] * G[n][nbr]['weight']
r[n] += (1.0 - c) * e[n] / (1.0 + alpha)
err = sum([abs(r[n] - rlast[n]) for n in r])
if err < tol:
return r
return r
def reverse_power_method(G, c=0.85, maxiter=100, tol=1e-3, personalization=None):
"""
r = cr'W + (1-c)e
:param G: Networkx DiGraph created by transition matrix W
:param c: damping factor
:param maxiter: maximum number of iterations
:param tol: error tolerance
:param personalization: personalization for teleporation vector, uniform distribution if None
:param print_msg: boolean to check whether to print number of iterations for convergence or not.
:return: PageRank vector
"""
nnodes = G.number_of_nodes()
if personalization is None:
e = dict.fromkeys(G, 1.0 / nnodes)
else:
e = dict.fromkeys(G, 0.0)
for i in e:
e[i] = personalization[i, 0]
r = deepcopy(e)
for niter in range(maxiter):
rlast = r
r = dict.fromkeys(G, 0)
for n in r:
for nbr in G[n]:
r[nbr] += c * rlast[n] * G[n][nbr]['weight']
r[n] += (1.0 - c) * e[n]
err = sum([abs(r[n] - rlast[n]) for n in r])
if err < tol:
return r
return r
# def alias_setup(probs):
# """
# Compute utility lists for non-uniform sampling from discrete distributions.
# Refer to https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/
# for details
# """
# K = len(probs)
# q = np.zeros(K)
# J = np.zeros(K, dtype=np.int)
# smaller = []
# larger = []
# for kk, prob in enumerate(probs):
# q[kk] = K * prob
# if q[kk] < 1.0:
# smaller.append(kk)
# else:
# larger.append(kk)
# while len(smaller) > 0 and len(larger) > 0:
# small = smaller.pop()
# large = larger.pop()
# J[small] = large
# q[large] = q[large] + q[small] - 1.0
# if q[large] < 1.0:
# smaller.append(large)
# else:
# larger.append(large)
# return J, q
# def alias_draw(J, q):
# """
# Draw sample from a non-uniform discrete distribution using alias sampling.
# """
# K = len(J)
# kk = int(np.floor(np.random.rand() * K))
# if np.random.rand() < q[kk]:
# return kk
# else:
# return J[kk]
# Convert sparse matrix to tuple
def sparse_to_tuple(mat):
if not isspmatrix_coo(mat):
mat = mat.tocoo()
coords = np.vstack((mat.row, mat.col)).transpose()
values = mat.data
shape = mat.shape
return coords, values, shape
def train_val_test_split(A, test_frac=.1, val_frac=.05, prevent_disconnect=False, is_directed=False):
# NOTE: Splits are randomized and results might slightly deviate from reported numbers in the paper.
result = dict()
# graph should not have diagonal values
if is_directed:
G = nx.from_scipy_sparse_matrix(A, create_using=nx.DiGraph(), edge_attribute='weight')
else:
G = nx.from_scipy_sparse_matrix(A, create_using=nx.Graph(), edge_attribute='weight')
num_cc = nx.number_connected_components(G)
A_triu = triu(A) # upper triangular portion of adj matrix
A_tuple = sparse_to_tuple(A_triu) # (coords, values, shape), edges only 1 way
edges = A_tuple[0] # all edges, listed only once (not 2 ways)
num_test = int(np.floor(edges.shape[0] * test_frac)) # controls how large the test set should be
num_val = int(np.floor(edges.shape[0] * val_frac)) # controls how alrge the validation set should be
# Store edges in list of ordered tuples (node1, node2) where node1 < node2
edge_tuples = [(min(edge[0], edge[1]), max(edge[0], edge[1])) for edge in edges]
all_edge_tuples = set(edge_tuples)
train_edges = set(edge_tuples) # initialize train_edges to have all edges
test_edges, val_edges = set(), set()
# Iterate over shuffled edges, add to train/val sets
np.random.shuffle(edge_tuples)
for edge in edge_tuples:
node1, node2 = edge[0], edge[1]
# If removing edge would disconnect a connected component, backtrack and move on
G.remove_edge(node1, node2)
if prevent_disconnect == True:
if nx.number_connected_components(G) > num_cc:
G.add_edge(node1, node2)
continue
# Fill test_edges first
if len(test_edges) < num_test:
test_edges.add(edge)
train_edges.remove(edge)
# Then, fill val_edges
elif len(val_edges) < num_val:
val_edges.add(edge)
train_edges.remove(edge)
# Both edge lists full --> break loop
elif len(test_edges) == num_test and len(val_edges) == num_val:
break
if (len(val_edges) < num_val or len(test_edges) < num_test):
print("WARNING: not enough removable edges to perform full train-test split!")
print("Num. (test, val) edges requested: ({}, {})".format(num_test, num_val))
print("Num. (test, val) edges returned: ({}, {})".format(len(test_edges), len(val_edges)))
if prevent_disconnect == True:
assert nx.number_connected_components(G) == num_cc
test_edges_false = set()
while len(test_edges_false) < num_test:
idx_i, idx_j = np.random.randint(0, A.shape[0]), np.random.randint(0, A.shape[0])
if idx_i == idx_j:
continue
false_edge = (min(idx_i, idx_j), max(idx_i, idx_j))
# Make sure false_edge not an actual edge, and not a repeat
if false_edge in all_edge_tuples:
continue
if false_edge in test_edges_false:
continue
test_edges_false.add(false_edge)
val_edges_false = set()
while len(val_edges_false) < num_val:
idx_i = np.random.randint(0, A.shape[0])
idx_j = np.random.randint(0, A.shape[0])
if idx_i == idx_j:
continue
false_edge = (min(idx_i, idx_j), max(idx_i, idx_j))
# Make sure false_edge in not an actual edge, not in test_edges_false, not a repeat
if false_edge in all_edge_tuples or \
false_edge in test_edges_false or \
false_edge in val_edges_false:
continue
val_edges_false.add(false_edge)
train_edges_false = set()
while len(train_edges_false) < len(train_edges):
idx_i = np.random.randint(0, A.shape[0])
idx_j = np.random.randint(0, A.shape[0])
if idx_i == idx_j:
continue
false_edge = (min(idx_i, idx_j), max(idx_i, idx_j))
# Make sure false_edge in not an actual edge, not in test_edges_false,
# not in val_edges_false, not a repeat
if false_edge in all_edge_tuples or \
false_edge in test_edges_false or \
false_edge in val_edges_false or \
false_edge in train_edges_false:
continue
train_edges_false.add(false_edge)
# assert: false_edges are actually false (not in all_edge_tuples)
assert test_edges_false.isdisjoint(all_edge_tuples)
assert val_edges_false.isdisjoint(all_edge_tuples)
assert train_edges_false.isdisjoint(all_edge_tuples)
# assert: test, val, train false edges disjoint
assert test_edges_false.isdisjoint(val_edges_false)
assert test_edges_false.isdisjoint(train_edges_false)
assert val_edges_false.isdisjoint(train_edges_false)
# assert: test, val, train positive edges disjoint
assert val_edges.isdisjoint(train_edges)
assert test_edges.isdisjoint(train_edges)
assert val_edges.isdisjoint(test_edges)
# Convert edge-lists to numpy arrays
result['adjacency_train'] = nx.adjacency_matrix(G)
result['train_edge_pos'] = np.array([list(edge_tuple) for edge_tuple in train_edges])
result['train_edge_neg'] = np.array([list(edge_tuple) for edge_tuple in train_edges_false])
result['val_edge_pos'] = np.array([list(edge_tuple) for edge_tuple in val_edges])
result['val_edge_neg'] = np.array([list(edge_tuple) for edge_tuple in val_edges_false])
result['test_edge_pos'] = np.array([list(edge_tuple) for edge_tuple in test_edges])
result['test_edge_neg'] = np.array([list(edge_tuple) for edge_tuple in test_edges_false])
# NOTE: these edge lists only contain single direction of edge!
return result