adambot806
/
Automated-discovery-of-characteristic-features-of-phase-transitions-in-many-body-localization
Public
forked from PatrickHuembeli/Automated-discovery-of-characteristic-features-of-phase-transitions-in-many-body-localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMBL_Hamiltonian.py
173 lines (149 loc) · 5.1 KB
/
MBL_Hamiltonian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from scipy.sparse import csr_matrix, rand
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import qutip as qt
import scipy.sparse.linalg as sl
# Hamiltonian from Many-body localization edge in the random-field Heisenberg chain
# https://arxiv.org/pdf/1411.0660.pdf
# In the paper they set J=Jz=1
def Hamiltonian_Heisenberg_chain(hmax, sigmax, sigmay, sigmaz, N, J, Jz):
hz = np.random.uniform(-hmax, hmax, N)
#hz = [2]*N
H = sum(Jz*(sigmaz[j]*sigmaz[(j+1)%N]) + J*(sigmax[j]*sigmax[(j+1)%N]\
+ sigmay[j]*sigmay[(j+1)%N]) - hz[j]*sigmaz[j] for j in range(N)) #- hz[N-1]*sigmaz[N-1]
return H
def statistics(n, E):
delta_n = (E[n] - E[n - 1])
delta_np1 = (E[n + 1] - E[n])
print(delta_n, delta_np1,
min(delta_n, delta_np1) / max(delta_n, delta_np1))
return min(delta_n, delta_np1) / max(delta_n, delta_np1)
samples = 1
def find_epsilon_index(Energies, epsilon):
# find epsilon = 0.5
# 0.5 = (E-Emax)/(Emin-Emax) --> E = 0.5*(Emin+Emax)
targetE = epsilon * (Energies[0] - Energies[-1]) + Energies[-1]
return np.abs(np.array(Energies) - targetE).argmin()
def mean_energy(samples):
h_list = [0.001] + np.arange(0.1, 4.0, 0.3).tolist()
h_list = [0.001]
mean_list = []
for hmax in h_list:
stat = 0.0
for i in range(samples):
print(hmax, i)
H = Hamiltonian_Heisenberg_chain(hmax, sigmax, sigmay, sigmaz, N,
J, Jz)
m, v = H.eigenstates()
epsilon_index = find_epsilon_index(m, 0.5)
deltas = []
for n in range(
max(1, epsilon_index - 25),
min(len(m) - 1,
epsilon_index + 25)): #for n in range(1,2**N-1): #
deltas.append(statistics(n, m))
mean = np.mean(deltas)
stat += mean
print(deltas, mean)
#print('Js', Jz, J)
#print('epsilon_index', epsilon_index, a)
#print(hmax, mean)
mean_list.append(stat / samples)
return mean_list
def entanglement_entropy(hmax):
liste = []
for N in [4, 6, 8, 10]:
print(N)
sigmax = [
1 / 2.0 * qt.tensor([qt.qeye(2)] * (j - 1) + [qt.sigmax()] +
[qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
sigmay = [
1 / 2.0 * qt.tensor([qt.qeye(2)] * (j - 1) + [qt.sigmay()] +
[qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
sigmaz = [
1 / 2.0 * qt.tensor([qt.qeye(2)] * (j - 1) + [qt.sigmaz()] +
[qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
H = Hamiltonian_Heisenberg_chain(hmax, sigmax, sigmay, sigmaz, N, J,
Jz)
m, v = H.eigenstates()
epsilon_index = 2**N // 2 # Just take middle of spectrum as in paper
rho = v[epsilon_index]
liste.append(qt.entropy_vn(rho, base=np.e, sparse=False))
return liste
N = 8
J = 1.0
Jz = 1.0
hmax = 1.0
qubitfactor = 1 / 2.0
sigmax = [
qubitfactor * qt.tensor([qt.qeye(2)] *
(j - 1) + [qt.sigmax()] + [qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
sigmay = [
qubitfactor * qt.tensor([qt.qeye(2)] *
(j - 1) + [qt.sigmay()] + [qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
sigmaz = [
qubitfactor * qt.tensor([qt.qeye(2)] *
(j - 1) + [qt.sigmaz()] + [qt.qeye(2)] * (N - j))
for j in range(1, N + 1)
]
a = mean_energy(samples)
#np.save('7mean_energy_N12', a)
"""
# Fidelity check
delta_hmax = 0.01
liste = []
for hmax in np.arange(0.1, 4.0, 0.1):
meanfid = 0.0
for i in range(samples):
H = Hamiltonian_Heisenberg_chain(hmax, sigmax, sigmay, sigmaz, N, J, Jz)
w1,v1 = H.eigenstates()
H = Hamiltonian_Heisenberg_chain((hmax+delta_hmax), sigmax, sigmay, sigmaz, N, J, Jz)
w2,v2 = H.eigenstates()
fidel = qt.fidelity(v1[0], v2[0])
meanfid +=fidel
print(meanfid/samples)
liste.append(meanfid/samples)
"""
#liste = check_phase_trans(samples)
"""
for i in range(samples):
H = Hamiltonian_Heisenberg_chain(hmax, sigmax, sigmay, sigmaz, N, J, Jz)
m ,v = H.eigenstates()
def statistics(n, E):
delta_n = (E[n]-E[n-1])
delta_np1 = (E[n+1]-E[n])
return min(delta_n, delta_np1)/max(delta_n, delta_np1)
a = []
for n in range(1,2**N-1):
a.append(statistics(n,m))
mean = np.mean(a)
stat += mean
# print(stat/(i+1))
print(mean)
# SAVE STATES
for state in v[N//4:3*N//4]:
states.append(state)
if stat > 0.49:
labels.append([1,0])
else:
labels.append([0,1])
filename = 'MBL_states.h5'
f = h5py.File(filename, 'w')
X_dset = f.create_dataset('my_data', (len(labels), N**2, 1), dtype='f')
X_dset[:] = states
y_dset = f.create_dataset('my_labels', (len(labels), 2), dtype='i')
y_dset[:] = labels
f.close()
"""