-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
89 lines (70 loc) · 3.01 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import unittest
import numpy as np
import os
import compute
import loader
import builder
def generate_testfiles(path, shape, count):
if not os.path.exists(path):
os.mkdir(path)
for x in range(1, count+1):
named = f"CBCT_{x}.nii"
fill_value = x
builder.generate_nifti_file(path, named, shape, fill_value)
builder.generate_nifti_file(path, "mask.nii", shape, 50)
class TestAllTheThings(unittest.TestCase):
@classmethod
def setUpClass(self):
self.vals = [0.0, 1.0, 5.0, 7.0]
self.samples = list(map(lambda p: np.zeros((3, 3, 3)), self.vals))
for (sample, val) in zip(self.samples, self.vals):
sample[0][0][0] = val
mask = np.zeros((3, 3, 3))
mask[0][0][0] = 50.0
self.mask = mask
# Set threshold to data-1, leaving it unmasked.
self.mask_threshold = mask[0][0][0]-1
self.testfiles_dir = "testdata"
self.testfiles_count = 10
generate_testfiles(self.testfiles_dir, (3, 3, 3), self.testfiles_count)
def test_imagefinder(self):
pathlist = loader.find_images(self.testfiles_dir)
self.assertEqual(len(pathlist), self.testfiles_count)
def test_imageloader(self):
data = loader.load_images(self.testfiles_dir)
self.assertEqual(len(data), self.testfiles_count)
self.assertEqual(data[0][0][0][0], 1)
self.assertEqual(data[self.testfiles_count-1][0]
[0][0], self.testfiles_count)
def test_loadmask(self):
mask = loader.load_mask(self.testfiles_dir)
self.assertEqual(mask[0][0][0], 50)
def test_loaddataset(self):
dataset = loader.load_dataset(self.testfiles_dir)
self.assertEqual(len(dataset["data"]), self.testfiles_count)
self.assertIn("mask", dataset)
def test_listsorter(self):
unsorted = ["CBCT_2.nii", "CBCT_15.nii", "CBCT_3.nii"]
expected = ["CBCT_2.nii", "CBCT_3.nii", "CBCT_15.nii"]
result = loader.sort_images(unsorted)
self.assertEqual(result, expected)
def test_compute_regressions(self):
degree = 1
computed = compute.compute_regressions(self.samples, degree)
expected = np.polyfit(range(len(self.samples)), self.vals, degree)
self.assertAlmostEqual(computed[0][0][0][0], expected[0], places=3)
def test_compute_gradients(self):
gradients = compute.compute_gradients(self.samples)
self.assertEqual(gradients[0][0][0][0], 1.0)
self.assertEqual(gradients[1][0][0][0], 2.5)
self.assertEqual(gradients[2][0][0][0], 3.0)
self.assertEqual(gradients[3][0][0][0], 2.0)
def test_apply_mask(self):
sample = self.samples[3]
masked = compute.apply_mask(sample, self.mask, self.mask_threshold)
self.assertEqual(np.ma.is_masked(masked), True)
self.assertEqual(masked[0][0][0], sample[0][0][0])
self.assertEqual(masked.mask[0][0][0], False)
self.assertEqual(masked.mask[1][0][0], True)
if __name__ == '__main__':
unittest.main()