-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
131 lines (100 loc) · 3.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from typing import Any, Dict
import uvicorn
from fastapi import FastAPI, HTTPException
from models.models import *
from services import preprocess_data
from services.DIL import process_health_metrics
from services.fitness_tracking import *
from services.IAL import aggregated_insights
from services.journaling_sentiment import *
from services.sleep_analysis import *
# Initialize FastAPI app
app = FastAPI()
# In-memory database for user data
user_data_store: Dict[str, Dict[str, Any]] = {}
@app.get("/")
@app.post("/")
def ping():
"""
Ping endpoint to check if the API is running.
"""
return {"message": "Welcome to the AI Fitness API"}
@app.post("/api/health-metrics")
def health_metrics(data: HealthData):
"""
Process and normalize health metrics data for a user.
"""
user_id = data.user_id
health_data = preprocess_data(data.metrics)
normalized_health_data = process_health_metrics(health_data)
# Update in-memory data store
user_data_store.setdefault(user_id, {})["health_data"] = {
"health_data": health_data,
}
return {"Health Data": normalized_health_data}
@app.post("/api/fitness-tracking")
def fitness_tracking(data: FitnessData):
"""
Analyze weekly fitness trends and provide recommendations.
"""
user_id = data.user_id
activity_data = preprocess_data(data.activity)
weekly_trends = analyze_trends(activity_data)
recommendations = generate_recommendations(weekly_trends)
# Update in-memory data store
user_data_store.setdefault(user_id, {})["fitness_data"] = {
"weekly_trends": weekly_trends,
"recommendations": recommendations,
}
return {"Weekly Trends": weekly_trends, "Recommendations": recommendations}
@app.post("/api/fitness-tracking/predict")
def fitness_predict(data: FitnessData, prediction_data: PredictionData):
"""
Predict user next day volume of burned calories from past fitness history
"""
activity_data = preprocess_data(data.activity)
prediction = predict_calories(data=activity_data, prediction_data=prediction_data)
return {"Predicted Calories": prediction}
@app.post("/api/sleep-analysis")
def sleep_analysis(data: SleepData):
"""
Analyze sleep patterns and generate personalized recommendations.
"""
user_id = data.user_id
sleep_data = preprocess_data(data.activity)
sleep_patterns = analyze_sleep_patterns(sleep_data)
recommendations = generate_sleep_recommendations(sleep_patterns)
# Update in-memory data store
user_data_store.setdefault(user_id, {})["sleep_data"] = {
"sleep_patterns": sleep_patterns,
"recommendations": recommendations,
}
return {"Sleep Patterns": sleep_patterns, "Recommendations": recommendations}
@app.post("/api/journal-sentiment")
def journal_sentiment(data: JournalData):
"""
Analyze journal entries for sentiment and provide feedback.
"""
user_id = data.user_id
journal_entries = preprocess_data(data.journal_entries)
summary = sentiment_summary(journal_entries)
feedback = generate_feedback(summary)
# Update in-memory data store
user_data_store.setdefault(user_id, {})["journal_sentiment"] = {
"summary": summary,
"feedback": feedback,
}
return {"Sentiment Summary": summary, "Feedback": feedback}
@app.get("/api/aggregated-insights/{user_id}")
def get_aggregated_insights(user_id: str):
"""
Retrieve aggregated insights for a specific user.
"""
if user_id not in user_data_store:
raise HTTPException(status_code=404, detail="User data not found.")
# Gather all user data
user_data = user_data_store[user_id]
aggregated_data = aggregated_insights(user_data)
return {"Aggregated Insights": aggregated_data}
if __name__ == "__main__":
uvicorn.run(app=app, port=8080, host="127.0.0.1")